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Highlights
Garlic has been used for centuries to
treat human diseases.

Sulfur compounds present in the
edible parts of garlic can alter the levels
of gaseous signalling molecules like
NO, CO, and H2S in mammalian cells
and tissues.

Some of garlic’s sulfur compounds
have been found to act as natural
H2S donor molecules.
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Garlic (Allium sativum) and allied plant species are rich sources of sulfur
compounds. Major roles for garlic and its sulfur constituents include the
regulation of vascular homeostasis and the control of metabolic systems linked
to nutrient metabolism. Recent studies have indicated that some of these sulfur
compounds, such as diallyl trisulfide (DATS), alter the levels of gaseous sig-
nalling molecules including nitric oxide (NO), hydrogen sulfide (H2S), and per-
haps carbon monoxide (CO) in mammalian tissues. These gases are important
in cellular processes associated with the cardiovascular system, inflammation,
and neurological functions. Importantly, these studies build on the known
biological effects of garlic and associated sulfur constituents. This review
highlights our current understanding of the health benefits attributed to edible
plants like garlic.

Garlic and Its Many Roles
Garlic (Allium sativum) has been used in the treatment and prevention of a wide variety of
ailments for centuries [1]. The best known of these are the use of garlic as a ‘blood-thinning’
agent in China and India [2], as a treatment for asthma, for bacterial infections such as
leprosy, and for heart disorders by the Egyptians [3]. In modern times garlic has become a
culinary staple and has spawned a multimillion-dollar health-food supplement market. So,
what is responsible for garlic’s alluring popularity as a food and as a health supplement? One
likely explanation is that garlic contains an array of sulfur compounds that are health
promoting and responsible for the characteristic flavours associated with this plant [4].
Importantly, researchers have shown that these molecules, also present in other alliaceous
vegetables like onion (Allium cepa), influence a range of signalling networks in mammalian
cells and tissues associated with health and healthy ageing processes [5,6]. From a dietary
perspective, it is now widely accepted that the consumption of garlic and other alliaceous
vegetables is associated with a number of health benefits in humans, including reduced risk of
developing various cancers, particularly of the gastrointestinal tract [7], reduced risk of
cardiovascular disease [8–10], and reduced risk of type 2 diabetes [11]. Why these plants
are protective across such a wide spectrum of diseases remains unanswered but is perhaps
due to the many important biochemical reactions that plant-derived sulfur compounds
influence in the cells and tissues of our bodies.
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Although research focussed on these biochemical reactions remains in its infancy, the potential
for garlic-derived sulfur compounds to alter gaseous signalling molecule (see Glossary)
synthesis and levels in tissues is now being reported. Furthermore, some researchers have
reported that compounds like DATS, which is abundant in garlic oils, can participate in thiol–
disulfide exchange or enzyme-driven sulfur transfer reactions (Figure 1 and 2). These
processes, besides producing H2S, may generate other reactive sulfur species in mammalian
cells such as dihydropersulfides (H2S2), dihydropolysulfides (H2Sn), hydropersulfides (RS2H),
and hydropolysulfides (RSnH). Of late, a number of these polysulfides have been detected in
the brains of animals where they function as important signalling molecules and
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Glossary
AP39: a mitochondria-targeted H2S
donor.
Gaseous signalling molecules: a
class of gaseous molecules that are
endogenously produced in cells with
important signalling functions. These
include NO, CO, H2S, and possibly
ammonium.
GYY4137: the prototypic water-
soluble, slow-release H2S donor.
GYY4137 has been widely
characterised and shown to have
antihypertensive, anti-inflammatory,
anticancer, and antiageing effects in
animal models.
Polysulfides: a class of chemical
compounds containing chains of
sulfur atoms. Organic polysulfides
generally have the formula RSnR,
where R is an alkyl or aryl group. The
organic forms are widely represented
in the plant kingdom.
Sulfoxidation: the process by which
an oxygen atom is added to a sulfur-
containing molecule. This step in
metabolism allows the introduction of
a hydrophilic function group.
Thiol–disulfide exchange
reactions: the chemical interaction
that can occur when thiols (RSH)
react with disulfides (R'SSR'), leading
to the formation of a new disulfide
(RSSR') and a new thiol (R'SH). A
good example of this type of reaction
is the one that occurs between the
garlic-derived sulfur compound DATS
and the cellular thiol glutathione.
These reactions can produce H2S
gas.
cytoprotectants against oxidative stress [12–14]. Despite these observations, the biosynthetic
and catabolic pathways involved in their production and breakdown along with the overall
tissue turnover rates for these novel sulfur compounds are not fully understood. Furthermore,
whether diets rich in sulfur compounds can promote the formation of some of these novel
polysulfide species in mammalian tissues remains to be explored. Given that diet-derived sulfur
compounds constitute a significant proportion of the total sulfur ingested in the diets of humans
[15], the part played by these sulfur compounds in health and disease processes may be far
more complex than previously thought and their overall contribution to health potentially
underestimated.

Many garlic-derived sulfur compounds act on important biochemical and physiological
processes in mammalian cells such as cell signalling systems and cellular antioxidant net-
works, act as anti-inflammatory agents, and alter cytoprotective systems (Box 1) [16–33]. A
central mechanism attributed to many of these effects is the involvement of gaseous signalling
molecules including NO, CO, and H2S. Garlic, and several of its component sulfur com-
pounds, can increase the levels of these gases in cells and tissues. For example, S-allylcys-
teine (SAC) increases the levels of endogenous signalling molecules like NO in endothelial
cells thereby preserving endothelial functions [34]. Others, such as DATS, act as natural H2S
donor molecules. H2S is an important gaseous signalling molecule in biological systems and
can act on various ion channels, transcription factors, and protein kinases similarly to NO and
CO [35,36].

Given the important roles that these gases play in cellular homeostasis, it seems reasonable
that exploiting the levels of these molecules using dietary means could be an approach to
promote human health. It is well established that dysregulation of the production of NO, CO,
and H2S is linked to several diseases in humans, including cardiovascular diseases, diabetes,
inflammation, and some cancers [36]. In light of this, it is important to address the issue of
whether the levels of sulfur compounds should be increased in the diets of humans. We should
also question whether there is a necessity to develop newer crop species with enhanced levels
of biologically active sulfur compounds. Moreover, it is perhaps timely to re-explore the
chemical diversity of sulfur compounds that occurs in nature in view of identifying new sulfur
molecules that may be able to manipulate gaseous signalling molecules levels or to serve as
new polysulfide-generating species. Clearly, these approaches will be important in supporting
future strategies needed to combat the ever-increasing rates of diet-related diseases in the
general population.

Garlic-Derived Sulfur Compounds: Storage and Metabolism
The biosynthesis and storage of Allium sulfur compounds have been covered in detail else-
where [4,37]. Briefly, in many plants, including garlic, inorganic sulfur present in the environment
in the form of sulfate (SO4

2�
[494_TD$DIFF]) in soil and sulfur dioxide (SO2) gas in the air, are fixed by plants to

produce the amino acid cysteine. This process is known as the sulfur assimilation pathway. In
garlic, cysteine is used to produce nonvolatile sulfur storage compounds, the S-alk(enyl)-L-
cysteine sulfoxides (ASCOs). These storage compounds are odourless and widely distributed
in the tissues of members of the family Alliaceae. Critically, these compounds are the pre-
cursors of the lachrymatory and flavour compounds found in the agronomically important
genus Allium. Two main sulfur storage compounds are found in the tissues of garlic; namely,
SAC sulfoxide and S-methylcysteine sulfoxide. Following plant tissue damage by either chew-
ing or chopping, an enzyme called alliinase catabolises these storage compounds to produce
an array of volatile and nonvolatile sulfur compounds. For example, the storage compound alliin
is broken down to produce allicin (allyl 2-propenethiosulfinate) and this in turn undergoes further
2 Trends in Pharmacological Sciences, Month Year, Vol. xx, No. yy
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Figure 1. A Generalised Overview of Diallyl Trisulfide (DATS) Metabolism in Mammalian Tissues and Assumed Production of Hydrogen Sulfide (H2S)
and Its Recognised Molecular Targets in Cells. Two thiol–disulfide exchange reaction pathways have been proposed to generate H2S from DATS. In the first
pathway (Route A), the nucleophilic attack of cellular glutathione (GSH) on allylic sulfur generates S-allyl glutathione disulfide (GSSA) and allyl perthiol (ASSH). ASSH can
then release H2S on further reduction by GSH. In the second pathway (Route B), the nucleophilic attack of GSH on the central sulfur atom of DATS generates allyl
mercaptan (ASH) and S-allyl glutathione trisulfide (GS3A). GS3A can release H2S or react with additional reductants like GSH to form additional polysulfide species (not
shown) [99]. Once H2S is produced in cells, it can influence intracellular signalling proteins and transcription factors associated with cytoprotection and inflammation,
metabolism, cellular proteins, and ion channels. The ability of H2S to inhibit or stimulate these systems has been linked to the reported effects of this gas in the
cardiovascular system. NF-kB, nuclear factor kappa B; Nrf-2, nuclear factor erythroid 2 (NFE2)-related factor 2; PI3K, phosphatidylinositol 3-kinase; PKC, protein
kinase C; ERK1/2, extracellular signal-regulated protein kinase 1 and 2; JNK, c-Jun N-terminal kinase; p38, p38 mitogen-activated protein kinase; AMPK, 50 AMP-
activated protein kinase; TRPV, transient receptor potential vanilloid.
reactions to generate diallyl sulfide (DAS), diallyl disulfide (DADS), or DATS. To add further
complexity to this picture, the levels and composition of these molecules are highly dependent
on the processing and cooking regimens to which the plant tissues are exposed. For this
reason, the predominant sulfur compounds found in garlic are grouped based on a classifica-
tion system [4]. This system recognises three major chemical groups found in garlic tissues: (i)
the head space volatiles [i.e., chemicals generated at room temperature following cutting or
homogenisation of tissues, like dimethyl sulfide and allyl mercaptan (AM)]; (ii) decomposition
products formed from thiosulfinates at room temperature, including allicin and SAC; and (iii) oils
obtained from vigorous preparation techniques such as steam distillation, including DADS,
DATS, allyl methyl trisulfide (AMS), and 2-vinyl-4H-1,3-dithiin.

On ingestion the fate of many of these sulfur compounds remains less well understood. When
fed to animals, purified alliin accumulates in the stomach, liver, and intestinal tissues and is
eliminated unchanged in the urine and faeces. By contrast, allicin and vinyl dithiin are absorbed
Trends in Pharmacological Sciences, Month Year, Vol. xx, No. yy 3
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Figure 2. When the Tissues of Garlic Are Damaged, the S-alk(en)yl-L-Cysteine Sulfoxides Come into
Contact with the Enzyme Alliinase. Alliinase degrades these storage compounds to produce the molecule allicin and
this compound can in turn undergo further chemical reactions to produce polysulfides such as diallyl disulfide (DADS) and
diallyl trisulfide (DATS). These compounds can induce the expression of enzymes like nitric oxide (NO) synthase (NOS),
cystathionine-gamma-lyase (CSE), and haem oxygenase (HO-1) in cells, with this in turn producing NO, carbon monoxide
(CO), and hydrogen sulfide (H2S) in mammalian tissues. Alternatively, compounds like DATS can react with cellular thiols
such as glutathione to produce H2S, and many believe that these molecules are acting as natural H2S donor compounds.
Furthermore, emerging evidence has shown that crosstalk exists between the H2S and NO systems and this can lead to
the production of other biologically active polysulfide species, [490_TD$DIFF]dihydrogen disulfide (H2S2) and [491_TD$DIFF]dihydrogen trisulfide (H2S3).

Box 1. Cell Signalling Networks Influenced by Garlic and Its Sulfur Compounds

It is now known that, at themolecular level, garlic-derived sulfur compounds can influence a range of signalling networks
in mammalian cells. These include NF-kB, an important transcription factor involved in innate immunity [14–17]. Other
proteins, including several kinases, are involved in a diverse array of cellular functions including cell growth, proliferation,
differentiation, motility, survival, and intracellular trafficking, like p38mitogen-activated protein kinase (MAPK) [18], c-Jun
NH2-terminal kinase (JNK) [19], extracellular signal-regulated kinase (ERK) [20], and phosphoinositide 3-kinase–protein
kinase B (PI3K–AKT) [21]. The transcription factor Nrf-2, which controls the expression of genes and proteins involved in
the detoxification and elimination of reactive oxidants and electrophilic species, is triggered [22–25], as is the tumour
suppressor protein p53 [26–28], by several of garlic’s sulfur compounds. Similarly, proteins involved in nutrient sensing
and energy metabolism, including AMP-activated protein kinase [29,30], proliferator-activated receptor gamma [31,32],
and NAD-dependent deacetylase sirtuin-1 (SIRT1) [33], have also been found to be altered in cells and tissues of
mammals by garlic and its sulfur constituents. Importantly, while this list is by nomeans exhaustive, it does go someway
in explaining many of the reported biological effects associated with garlic and those of other sulfur-containing plant
species.
rapidly and are extensively metabolised [38]. Allicin decomposes or is metabolised to a range of
low-molecular-weight sulfur compounds including DADS and AM [39–41]. By contrast, SAC,
the major water-soluble component of aged garlic extract (AGE), is metabolised by N-acetyla-
tion and sulfoxidation to form N-acetyl-S-allyl-L-cysteine and N-acetyl-S-allyl-L-cysteinesulf-
oxide, and these metabolites are excreted in urine [42]. Lipophilic volatiles, which are major
components of garlic oils, can undergo a similar series of oxidative reactions. For example, DAS
is metabolised in rats to form the respective sulfoxides and sulfones, while DADS forms AM and
4 Trends in Pharmacological Sciences, Month Year, Vol. xx, No. yy
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allyl methyl sulfide. These metabolites are further modified by sulfoxidation to allyl methyl
sulfoxide (AMSO) and allyl methyl sulfone (AMSO2). An additional metabolic route involved
in the metabolism of some polysulfides like DATS is their reactions with cellular thiols (R-SH)
(Figure 1). Thiols constitute a pool of molecules containing a sulfhydral moiety (R-SH), and in
mammalian cells these are primarily represented by the compounds glutathione and cysteine.
These compounds play major roles in protein structure, in the regulation of enzyme activity by
controlling transcription factor activity and binding, and in xenobiotic metabolism. Importantly,
DATS reacts with GSH to produce H2S and this gas can either act as a signalling molecule or
drive the synthesis of other biologically important sulfur species including per- and polysulfides
as mentioned above [43].

Modulation of Endogenous Gaseous Signalling Molecules
Over the past two decades, interest in the biology of naturally occurring gases including NO,
CO, and H2S has gained momentum. These molecules are synthesised by distinct enzymatic
systems in cells whereby their production, or lack thereof, can have profound physiological
consequences in, for example, the cardiovascular system [35,44,45]. Interestingly, many of the
molecular mechanisms ascribed to the cardioprotective effects of NO, CO, and H2S are shared
by the garlic-associated sulfur compounds. While the reasons for this remain unclear, it may be
due to the fact that garlic and several of its sulfur compounds, including SAC, ajoene, and the
di- and trisulfides, trigger the expression of biosynthetic systems responsible for NO, CO, and
H2S production in mammalian tissues. In other areas of research, garlic and associated
essential oils have been shown to generate H2S under certain conditions [46]. The generation
of this gas has been linked to the presence of DATS and, to a lesser extent, to the cyclic 2-vinyl
dithiin, 3-vinyl dithiin, and ajoene in these oils [47]. These molecules are perhaps acting as
natural H2S donor molecules, akin to modern pharmacological donors like GYY4137 [48],
AP39 [49], and the H2S-releasing derivatives of nonsteroidal anti-inflammatory drugs [50].
Another important finding in recent times is that H2S and NO can react together to produce
polysulfides (H2Sn) [12,43]. The possibility that garlic-derived H2S reacts with endogenous NO
to drive the intracellular formation of polysulfide species in the cells of our bodies is intriguing.

NO-Generating Systems
Garlic extracts, and garlic-derived sulfur metabolites, are known to differentially regulate NO
levels in mammalian cells [34]. Perhaps because of the reported benefits associated with the
consumption of garlic and cardiovascular health, most research has been focussed on NO
production in the cardiovascular system and in inflammatory cells. In mammals, endogenous
NO is generated by the L-arginine–NO synthase (NOS) pathway. This pathway is represented
by three NOS enzymes; namely, neuronal (nNOS, NOS1), inducible (iNOS, NOS2), and
endothelial (eNOS, NOS3) [44]. Early studies showed that garlic intake improves the elastic
properties of the aorta in elderly people and this was hypothesised to be partly due to NO
production [51]. Researchers have since begun to unravel the complex molecular mechanisms
by which dietary components such as garlic influence gaseous signalling molecule levels in
mammalian systems [52,53]. Garlic upregulates NO production in isolated platelets and
placental villous tissues [54,55], in isolated rat pulmonary arteries [56], and in serum and
cardiac tissues of mice [57] and increases NO production, perhaps via eNOS, in endothelial
cells [58,59]. eNOS is expressed in endothelial cells and the NO produced has antihyperten-
sive, antithrombotic, and antiatherosclerotic effects in the cardiovascular system. Other garlic
preparations including AGE have also been examined in relation to NO production. AGE is a
commercially available standardised garlic supplement that contains water-soluble sulfur
compounds such as SAC, S-1-propenylcysteine (S1PC), and S-allylmercaptocysteine (SAMC).
This supplement increases blood NO concentrations in mice [57] and causes vasorelaxation in
Trends in Pharmacological Sciences, Month Year, Vol. xx, No. yy 5
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isolated rat aortic rings [60]. Similarly, DADS and DATS, which are constituents of garlic oils,
protect eNOS from inactivation and proteasomal degradation in cells treated with oxLDL [61].
DATS has also been shown to restore NO production and decrease eNOS phosphorylation in
human cardiac microvascular endothelial cells grown under high-glucose conditions [62].

Less widely reported but of equal importance are studies examining the effects of garlic on
nNOS function. In a range of pathophysiological conditions such as Alzheimer’s disease (AD),
stroke, and Parkinson’s disease, the production of NO can be damaging in the brain. This
damage arises when NO combines with the superoxide anion (O2

.�) to form peroxynitrite
(ONOO�), which in turn promotes DNA damage leading to the induction of neuronal cell death
[63]. Of the available studies, mixed results have been obtained in cells and tissues exposed to
garlic-derived sulfur compounds. For example, DADs induced nNOS expression in neuronal
cells, which correlated with increased flux of reactive oxygen and nitrogen species leading to
cytotoxicity in SH-SY5Y and NSC34 neuronal cells [64]. By contrast, following mechanical
trauma injury, allicin decreased the expression of iNOS and increased the phosphorylation of
eNOS but had no effect on nNOS expression in rat cortical neurons [65]. Allicin was also
protective in amodel of glutamate-induced oxidative stress in spinal cord neurons and inhibited
the expression of iNOS, but again allicin had no effect on the expression of nNOS following
glutamate exposure [66]. Clearly, more research is needed in this area.

By far the most widely studied NO-generating system in relation to garlic is iNOS. NO
production by this enzyme plays important roles in a number of pathophysiological processes,
particularly in inflammation, infection, and diabetes [67]. Several studies have revealed the anti-
inflammatory properties of garlic and this may be linked to inhibition of NO production by
inflammatory cells. For example, ajoene, allicin, DAS, DADS, AMS, and DATS inhibit NO
production in mouse RAW 264.7 macrophages stimulated with bacterial lipopolysaccharide
[68–71]. SAC suppresses iNOS expression in human umbilical vein endothelial cells [34], while
garlic extracts inhibit iNOS expression and NO production in isolated rat cardiomyocytes [71].
Collectively these studies clearly demonstrate the differential effects of garlic-associated sulfur
compounds on NO production. This is important since it suggests that, while garlic may be able
to inhibit NO produced during inflammation by iNOS, it is unlikely to effect the beneficial
production of NO generated by eNOS in the cardiovascular system.

H2S-Generating Systems
H2S is primarily formed in tissues by the enzymes cystathionine-gamma-lyase (CSE), cysta-
thionine-beta-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST) [35]. Many
speculate that this gas is important in cancer cell proliferation and apoptosis [72,73], that it can
have both pro- and anti-inflammation effects in cells and tissues [74,75], that it has roles in
diabetes [76,77], inhibits neurodegeneration [78,79], and has antiageing properties [80,81],
and that it can function in cellular energy metabolism [82]. Nonenzymatic routes of H2S
production in mammalian cells have also been reported and some of these may be of relevance
to garlic. In cells, H2S can be produced from inorganic sources like elemental sulfur (S8) and
inorganic polysulfides (S3

2� and S5
2�) as well as from organic routes such as plant-derived

polysulfides [43]. It is timely to speculate that the presence of these inorganic and organic
sources in the diet may also be important sources of this gas.

The first studies to suggest potential involvement of H2S in the biological effects of garlic were
reported over a decade ago when the compounds DATS and SAC were shown to generate
H2S in blood [83,84] and heart tissues [85]. From the available evidence, garlic-driven H2S
production in cells occurs by two primary routes: either via cellular metabolism of the sulfur
6 Trends in Pharmacological Sciences, Month Year, Vol. xx, No. yy
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constituents followed by the release of H2S or by increasing the expression of H2S biosynthetic
enzymes in tissues [85]. SAC, an analogue of cysteine, increases protein expression levels of
CSE in myocardial infarction (MI) heart tissues and elevates the plasma concentration of H2S in
animals. Importantly, in the hearts of MI animals the inhibition of CSE reduced the activity of this
enzyme and lowered the plasma levels of H2S. These changes corresponded with a reduction
in the protective effects of SAC in acute MI in these animals [84]. Similarly, DATS increases the
expression of CSE and CBS in animal liver [86], kidney [87], and heart [88] and in melanoma [89]
and isolated primary rat hepatic stellate cells [90]. Of late, DATS has been increasingly used as a
natural H2S donor and as a tool to manipulate H2S levels in the cells and tissues of animals. For
example, DATS improves performance in passive avoidance and T-maze tasks and inhibits
neuroinflammation, oxidative stress, and cholinergic function in a model of AD in rats, partly via
an H2S-associated mechanism [91]. It has been reported that DATS restores tissue H2S levels
and improves the efficiency of cell-based therapy by enhancing the retention of injected bone
marrow cells in ischaemic tissues and improves blood perfusion, capillary/arteriole density,
skeletal muscle architecture, and cell survival in the ischaemic hind limbs of diabetic mice [92].
Similarly, DATS enhances blood flow recovery and revascularisation and increased capillary
density in a model of hind-limb ischaemia injury in wild-type but not in eNOS-knockout mice
[93]. This points to a possible interaction between the H2S generated from DATS and that of
NO, and supports similar findings reported for DATS and garlic [94]. A potential new avenue of
research is in the development of systems for the delivery of DATS to tissues. The development
of mesoporous silica-based nanoparticles (MSNs) containing DATS (DATS-MSNs) has recently
been described that release H2S in a slow and controlled manner within tissues. DATS-MSNs
are reported to be protective in ventilator-induced lung injury by inhibiting nuclear factor kappa
B (NF-kB) signalling, which is important in inflammation, and the production of TNF-a, IL-1a/b,
and IL-2 in animals [95] and are protective in a model of ischaemia–reperfusion (I/R) injury [96].

The link between garlic consumption and health has been known for decades, and in light of this
evidence researchers are now exploring the H2S-releasing capacity of dietary food plants in an
attempt toexplain someof thehealthbenefitsattributed to their consumptionbyhumans.Todate,
H2S has been generated from the essential oils of a wide range of dietary plants including stinky
bean (Parkia speciosa), durian (Durio zibethinus), yellowonion (A.cepa), leeks (Alliumporrum), and
garlic. Furthermore,H2S isdetected intracellularlywhenculturedmammalian cells are exposed to
these various oils [97]. These experiments confirm the possibility that the ingestion of plant
polysulfides augments production of H2S in mammalian cells [98–101]. Additional studies have
shown similar results and have confirmed that, in mammalian cells treated with garlic oil, poly-
sulfides rapidlyaccumulate incellsandonreactionwithendogenous thiolsproduceH2S [102].The
effect of preparative and cooking regimens on the H2S release rates of garlic tissues are also a
current areaof interest [46,47]. It hasbeen reported that theH2S-releasingcapacity ofpolysulfide-
rich oils is dependent on the pH of the original extracted plant material [98]. In addition, it was
shown that pH influenced the production and accumulation of polysulfides in plant oils. In this
work, oils produced fromplant tissues extracted at basic pHwere rich in disulfides like DADS and
were found to have low H2S-releasing capacity. By contrast, oils obtained from acidified plant
tissues accumulated AMS and DATS along with cyclic polysulfide species including 3-vinyl-4H-
1,2-dithiinand2-vinyl-1,3-dithianeandgeneratedappreciable levelsofH2Swhen tested [99,103].
Cookingalsoaffected thepolysulfidecompositionofgarlicandthesubsequentproduction ratesof
H2S.Boilingcrushedgarlic forshortperiodsof time fails to reducepolysulfide levels inplant tissues,
in contrast to prolonged heating, which reduces their levels. The impact of prolonged cooking
reducespolysulfideconcentrations and the subsequent productionofH2S [46,47].Whether such
cooking regimensaffect thebiological propertiesof garlic, and thedeliveryofH2S tocells, requires
additional research.
Trends in Pharmacological Sciences, Month Year, Vol. xx, No. yy 7
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Outstanding Questions
Can the ingestion of garlic alter endog-
enous H2S levels in human
participants?

What are the relative levels of H2S
generated following consumption
and are they of physiological or bio-
chemical significance?

Do preparation and cooking techni-
ques alter the levels of H2S progenitor
molecules in plant tissues?

What amounts of garlic need to be
consumed to generate physiologically
relevant levels of gases in cells?

Can garlic therapeutics that deliver
polysulfides to specific tissues be
developed?

What are the pharmacokinetic profiles
and elimination routes for naturally
occurring sulfur compounds?

Does the metabolism of sulfur species
in humans change with age or across a
range of diseases?

Can we improve on nature? Is the
development of new sulfur-containing
therapeutics designed based on natu-
ral molecules plausible?
CO-Generating Systems
Surprisingly, few studies have explored the influence of garlic-derived extracts or polysulfide
species on haem oxygenase (HO-1), the rate-limiting enzyme in the breakdown of haem into
CO, iron, and bilirubin. Importantly, these products, including CO, are known to exert protective
effects in several organs following stress. Currently, DAS, DADS, and DATS have been show to
increase the transcriptional levels of HO-1 via induction of the transcription factor nuclear factor
erythroid 2 (NFE2)-related factor 2 (Nrf-2) [104,105]. HO-1 induction occurs in cultured
endothelial cells treated with allicin and AGE [106,107] and in murine macrophages treated
with aged red-garlic extracts [108,109]. Similarly, HO-1 can be induced in primary cultured
neurons and in mice treated with SAC [110] and in the livers of rats consuming black garlic
[111]. What is not yet apparent is whether the induction of HO-1 leads to elevation of tissue CO
levels and whether this relates to any observable biological effect.

Concluding Remarks
It is clear that the biological effects that have been attributed to garlic are far more
complicated than were first imagined. Several sulfur compounds in garlic are unstable
in the milieu of the cell and readily react to generate other important chemical species such
as polysulfides and H2S. In turn, these stimulate endogenous production of NO, H2S, and
perhaps CO (Figure 2). Collectively these processes are likely to contribute to the reported
biological effects of garlic, particularly in the cardiovascular system. While only a few studies
have examined this elegant chemical interplay, it remains to be seen what impact these
systems have on pathophysiological processes in humans, and clearly many questions
remain to be answered (see Outstanding Questions). It is evident that further experimental
research is needed to identify the molecular mechanisms of action of these compounds and
clinical studies are needed to evaluate their potential effectiveness in a range of diseases. Of
importance is whether plant-derived polysulfides or synthetic chemical analogues can be
developed as potential therapeutic drugs for use in the treatment of cardiovascular or
neurodegenerative disorders or as anti-inflammatory agents. Alternatively, elevating the
levels of polysulfides in edible plants or food products to promote health and healthy ageing
in the general population should be considered. This approach could be achieved using a
number of strategies including the identification of new edible plant species abundant in
polysulfides or, alternatively, by manipulating the levels of S-alk(enyl)-L-cysteine sulfoxides
in Allium tissues either by improving growing conditions to enhance sulfate availability or via
genetic approaches to alter the biosynthetic pathways associated with sulfur utilisation in
alliums. These strategies could combat the increased prevalence of disease in susceptible
populations linked to poor diet. More research in this area could lead to the development of
newer crops with enhanced health-promoting properties that when incorporated into the
diet reduce disease severity and as a consequence reduce the need for expensive medical
intervention.
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