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BACKGROUND: Sepsis refers to the dysregulated host immune response elicited by mi-
crobial infections resulting in life-threatening organ dysfunction. Sepsis represents a
medical challenge, since it is associated with a rate of death as high as 60%. Septic shock
is strongly associated with vascular dysfunction and elevated pulmonary capillary
permeability. We recently reported that the combination of hydrocortisone (HC),
ascorbic acid (vitC), and thiamine dramatically improves outcomes and reduces mortality
in patients with sepsis. In the present study, we provide experimental evidence in support
of the hypothesis that the combination of HC and vitC enhances endothelial barrier
function.

METHODS: Human lung microvascular endothelial cells were exposed to lipopolysaccharide
(LPS) in the absence or presence of HC and vitC.

RESULTS: LPS alone induced profound hyperpermeability, as reflected in decreased values
of transendothelial electrical resistance. vitC alone did not exhibit barrier enhancement
properties nor did it affect the LPS-induced hyperpermeability. Similarly, HC alone exhibited
only a minor barrier-enhancing and protective effect. Conversely, the combination of HC
and vitC, either as before or after treatment, dramatically reversed the LPS-induced barrier
dysfunction. The barrier-protective effects of HC and vitC were associated with reversal of
LPS-induced p53 and phosphorylated cofilin downregulation and LPS-induced RhoA
activation and myosin light chain phosphorylation.

CONCLUSIONS: These data provide a novel mechanism of endothelial barrier protection and
suggest one possible pathway that may contribute to the therapeutic effects of HC and vitC
in patients with sepsis. CHEST 2017; 152(5):954-962
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Deviations from normal endothelial barrier function can
lead to or be caused by various internal or external
stresses and pathologic conditions.1 Sepsis and septic
shock, as recently redefined,2 are associated with
pulmonary edema caused by increased permeability to
proteins across pulmonary endothelial and epithelial
barriers,3 and recovery from septic shock is associated
with a reduction in edema, consistent with restoration of
vascular function.4

The regulation of vascular permeability is tightly
coordinated by a variety of intracellular factors and
external stimuli.5 It is increased by inflammatory
factors, such as histamine, bradykinin, platelet-
activating factor, growth factors, glycation products,
cytokines, reactive oxygen species, and activated
leukocytes.6,7 These mediators trigger signaling
cascades that modulate the expression of junctional
proteins and adhesion molecules, as well as the
reorganization of the cytoskeleton and focal adhesion
complexes,8 all leading to compromised barrier
integrity.7

Sepsis is an insidious pathologic condition that
despite years of research and numerous clinical
trials levies a death rate of approximately 40%.9,10

We recently reported on the strikingly beneficial
effects of combined hydrocortisone (HC) and
ascorbic acid (vitC) therapy in patients with sepsis.3

Compared with patients receiving standard-care
therapy, those receiving HC and vitC exhibited
dramatically reduced mortality (40% vs 8%), a
reduced requirement for pressor agent support, and
decreasing Sequential Organ Failure Assessment
scores and procalcitonin blood levels. We speculated
that at least part of these actions of HC and vitC
might involve restoration of endothelial barrier
function.3

Thus, the current study examines the effect of HC
and vitC on lipopolysaccharide (LPS)-induced
vascular dysfunction. HC is a corticosteroid that
exhibits anti-inflammatory effects, increases
systemic vascular resistance, and potentiates the

vasoconstrictive responses of catecholamines and
angiotensin II.11 It is effective against ischemia/
reperfusion injury by mediating the
nontranscriptional activation of endothelial
nitric oxide synthase.12 It prevents the migration
of inflammatory cells from the circulation to tissues
by blocking the synthesis of various chemokines and
cytokines.13

vitC is a potent antioxidant that has long been known to
participate in several important vascular endothelial
functions, including increasing the synthesis and
deposition of type IV collagen in the basement
membrane, stimulating endothelial proliferation,
inhibiting apoptosis, scavenging radical species, and
increasing the bioavailability of nitric oxide to help
modulate blood flow.14

Both drugs inhibit nuclear factor-kB activation and
downregulate the production of proinflammatory
mediators. Furthermore, they increase tight junctions
between endothelial and epithelial cells, which preserves
endothelial function and microcirculatory flow. In
addition, both are required for the synthesis of
catecholamines, and both increase vascular vasopressor
sensitivity.3

LPS is the major component of the outer wall of gram-
negative bacteria. It activates macrophages,
neutrophils, and dendritic and other cells that induce
inflammation, oxidative stress, and endothelial
damage.15 Exposure to LPS leads to endothelial barrier
dysfunction, a hallmark of acute lung injury, ARDS,
and sepsis.16,17

Our observations reveal that pretreatment of human
lung microvascular endothelial cells (HLMVECS)
with both compounds together, but not separately,
reverses the LPS-induced endothelial barrier
dysfunction. Furthermore, we show that this
protective effect occurs through the induction of
p53 and phosphorylated cofilin and the
downregulation of the RhoA/myosin light chain 2
(MLC2) pathway.16

Methods
The p53 (Catalog No. 9282s), p-MLC2 (Catalog No. 3674s), MLC2
(Catalog No. 8505), phospho-cofilin (Catalog No. 3313) and cofilin
(Catalog No. 3318) antibodies were from Cell Signaling. b-actin
antibody (Catalog No. P8999), CelyticM Lysis Reagent (Catalog No.
C2978), L-Ascorbic acid (Catalog No. A4544), and HC (Catalog No.
H6909) were from Sigma-Aldrich. Secondary mouse and rabbit
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antibodies were from LI-COR. Pierce BCA protein assay and
nitrocellulose membranes were from Fisher Scientific. RhoA
activation was detected by the Cell Signaling kit (Catalog No. 8820).

In house, HLMVECs were harvested and maintained as previously
described.18 Briefly, subpleural lung tissue was cut into small
fragments with scissors. After the removal of debris and
erythrocytes through a 40-mm nylon net, the tissue collected in the
net was treated with dispase, filtered through a 100-mm nylon net
(2 times) and then a 40-mm net, centrifuged, and resuspended in
Medium 199 (Gibco; Catalog No. 31100-019) with 20% fetal
bovine serum. Positive selection of HLMVECs was achieved by
adding magnetic beads coated with Ulex europaeus I to the cell
suspension.

The barrier function of endothelial cell monolayers was estimated by the
electric cell-substrate impedance sensing method, as previously
described.15 Experiments were conducted on wells that achieved at least
800 U baseline steady-state resistance. Proteins were isolated from cells,
and samples (40 mg per lane) were separated by electrophoresis, as
previously described.16 Band density was visualized in a LI-COR
Odyssey CLx imaging system.

Data are expressed as means ! SEM. Two-way analysis of variance
with Bonferroni correction (Figs 1-3) or one-way analysis of
variance with Dunnett’s post hoc test (Figs 4-8) was performed to
determine differences among groups. GraphPad Prism (GraphPad
Software) was used for data analysis, and n ¼ the number of
repeats.

Results

vitC Does Not Affect Endothelial Barrier Function

HLMVECs seeded on gold electrode arrays were
exposed to phosphate-buffered saline (PBS) (vehicle)
250 mM, 500 mM or 1,000 mM vitC. vitC did not induce a
biologically significant effect on transendothelial

electrical resistance (TEER) (Fig 1A). In additional
experiments, HLMVECs were exposed to either vehicle
(PBS) or 1, 000 mM vitC before treatment with PBS or
LPS (0.5 endotoxin units [EU]/mL). LPS decreased
TEER values of both vehicle-treated and vitC-treated
HLMVECs. There was no difference in TEER values
between the two LPS-treated groups (Fig 1B).

Figure 1 – Effect of vitC on endothelial
barrier function. Vehicle (phosphate-
buffered saline [PBS]) or vitC (250, 500,
1,000 mM) was added to the media of
confluent HLMVEC monolayers at
0 hours. A, vitC did not cause a biologi-
cally significantly change in the TEER of
the endothelial monolayers. B, Cells were
pretreated for 16 hours with either vehicle
(PBS) or vitC (1,000 mM) and were
consequently exposed to LPS (0.5
endotoxin units/mL [arrow]). A gradual
increase in endothelial permeability
(reduced TEER) was observed in the LPS-
treated cells of both groups (n ¼ 3 per
group; means ! SEM). HLMVEC ¼ hu-
man lung microvascular endothelial cell;
LPS ¼ lipopolysaccharide; TEER ¼
transendothelial resistance; VEH ¼
vehicle; vitC ¼ ascorbic acid.
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Effects of HC on Endothelial Barrier Function

HLMVECs were exposed to PBS and 4 mM or 6 mM
HC. HC induced a concentration-dependent but
biologically miniscule enhancement of barrier function
(Fig 2A). In additional experiments, HLMVECs were
exposed to PBS or HC (4 mM) for 16 hours prior to
PBS or LPS (0.5 EU/mL) treatment. Cells treated with
PBS maintained stable TEER values, whereas cells
treated with HC exhibited moderately increased barrier
function. LPS caused a sharp decrease in TEER, which
was only partially and moderately ameliorated by
pretreatment with HC (Fig 2B).

The Combination of HC and vitC Prevents and
Repairs the LPS-Induced Endothelial Barrier
Dysfunction

HLMVECs were pretreated (Fig 3A) or posttreated
(Fig 3B) with either vehicle or a combination of HC

(4 mM) and vitC (1,000 mM) 16 hours prior to or 15 min
after challenge with LPS (0.5 EU/mL) or PBS. PBS alone
did not influence TEER values, which remained steady
throughout the course of the study. As expected, LPS
induced a robust decrease in TEER. However, cells
pretreated or posttreated with HC and vitC exhibited
complete restoration of barrier function. To investigate
whether the effect of LPS was at least in part due to cell
death, we evaluated HLMVEC viability after LPS by the
trypan blue dye exclusion method. At 0.5 EU/mL (the
concentration used throughout this study), LPS did not
affect cell viability; however, cell death was observed at 20
times higher concentrations (Fig 4).

Since it appeared that HC and vitC together, but not
separately, were able to prevent LPS-induced barrier
dysfunction, we then investigated possible mechanisms
responsible for these effects.
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Figure 2 – Effect of HC on endothelial
barrier function. A, Vehicle (phosphate-
buffered saline [PBS]) or HC (4 mM, 6
mM) was added to the media of confluent
HLMVEC monolayers at 0 hours. HC in
both concentrations caused a dose-
dependent induction of TEER (n ¼ 3 per
group; means ! SEM). B, Cells were pre-
treated for 16 hours with either vehicle
(PBS) or HC (4 mM) and were exposed to
LPS (0.5 endotoxin units/mL). A gradual
increase in endothelial permeability
(reduced TEER) was observed in both
groups of the LPS-treated cells (n ¼ 4 per
group; means ! SEM). HC ¼ hydrocor-
tisone. See Figure 1 legend for expansion
of other abbreviations.
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The Combination of HC and vitC Prevents
LPS-Induced p53 Downregulation in HLMVECs

We have reported that LPS reduces p53 levels and that
p53 overexpression is associated with endothelial barrier
enhancement.16 We thus investigated the ability of HC
plus vitC to affect p53 expression. HLMVECs were
exposed to PBS, HC (4 mM), and vitC (1,000 mM) prior
to LPS (0.5 EU/mL) or vehicle treatment. p53
expression was examined by Western blotting 1 hour
after exposure to LPS. LPS induced profound p53
downregulation, in line with our previous reports.16,19

HC plus vitC-treated cells exhibited normal p53 levels
(Fig 5).

The Combination of HC and vitC Prevents the
LPS-Induced Cofilin Activation
(Dephosphorylation) in HLMVECs

Cofilin is a b-actin interacting protein that promotes
stress fiber formation. HLMVECs were exposed to PBS,
HC (4 mM), and vitC (1,000 mM) before LPS (0.5 EU/
mL) or vehicle treatment. Active (dephosphorylated)

and inactive (phosphorylated) cofilin expression was
examined by Western blotting 1 hour after LPS. LPS
induced significant activation of cofilin consistent

Figure 3 – The effect of the combination of
HC and vitC on LPS-induced hyper-
permeability. HLMVECs were seeded on
gold electrodes and allowed to reach
confluence (time ¼ 0). A, Cells were pre-
treated for 16 hours with either vehicle or
a combination of vitC (1,000 mM) and HC
(6 mM) and then exposed to LPS (0.5
endotoxin units/mL [arrow]). A gradual
increase in endothelial permeability
(reduced TEER) was observed in all
groups receiving LPS. However,
HLMVECs pretreated with vitC and HC
experienced a complete restoration of
barrier function 24 hours after LPS
treatment. B, Confluent HLMVECs
received LPS (0.5 endotoxin units/mL
down arrow]) and 15 min later were
treated with vehicle or a combination of
vitC (1,000 mM) and HC (6,mM) (up ar-
row). HC þ vitC completely prevented the
LPS-induced decrease in TEER (n ¼ 3 per
group; means ! SEM). See Figure 1 and 2
legends for expansion of abbreviations.
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Figure 4 – Effects of LPS on HLMVEC viability. Confluent HLMVECs
were exposed to LPS (0.5 or 10 EU/mL) for 48 hours. Cell viability at
that time was examined by the trypan blue exclusion method. At the
concentration used throughout the study (0.5 EU/mL), LPS did not
affect HLMVEC viability. (**P < .01 from VEH; n ¼ 3 per group; means
! SEM). EU = endotoxin units. See Figure 1 legend for expansion of
other abbreviations.
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with the known formation of stress fibers. HC plus
vitC-treated cells exhibited normal inactive cofilin
levels (Fig 6).

The Combination of HC and vitC Prevents
LPS-Induced RhoA Activation in HLMVECs

The RhoA pathway is a well-known mediator of
endothelial barrier dysfunction. HLMVECs were
exposed to PBS, HC (4 mM), and vitC (1,000 mM) before
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Figure 6 – The effect of HC and vitC on LPS-induced cofilin phos-
phorylation. Western blot analysis of phosphorylated cofilin in
HLMVECs pretreated with either vehicle (phosphate-buffered saline
[PBS]), or vitC (1,000 mM) þ HC (6 mM) prior to vehicle (PBS) or LPS
treatment (0.5 endotoxin units/mL). The blot shown is representative of
four independent experiments. Signal intensity of phosphorylated cofilin
was analyzed by densitometry. Protein levels were normalized to total
cofilin. (***P < .0001 vs vehicle; means ! SEM). p-cofilin ¼ phos-
phorylated cofilin. See Figure 1 and 2 legends for expansion of other
abbreviations.
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regulation. Western blot analysis of p53 in HLMVECs pretreated with
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LPS (0.5 EU/mL) or vehicle treatment. Active and total
RhoA levels were examined 1 hour after LPS. LPS
induced strong RhoA activation, in line with our
previous reports.16,19 HC plus vitC-treated cells
exhibited normally low active RhoA levels (Fig 7).

The Combination of HC and vitC Prevents the
LPS-Induced Activation (Phosphorylation) of MLC2
in HLMVECs

MLC2 activation by myosin light chain kinase or Rho
kinase is responsible for actin stress fiber formation.
HLMVECs were exposed to PBS, HC (4 mM), and vitC
(1,000 mM) before LPS (0.5 EU/mL) or vehicle
treatment. Phosphorylated and nonphosphorylated
MLC2 levels were measured by Western blotting 1
hour after LPS exposure. LPS induced significant
MLC2 phosphorylation, consistent with our previous
reports.16,19 HC plus vitC-treated cells exhibited
baseline nonphosphorylated MLC2 levels (Fig 8).

Discussion
Sepsis is a systemic inflammatory response to infection
from multiple causes. Severe sepsis describes instances in
which sepsis is complicated by acute organ dysfunction
and the provision of supportive therapy, such as
mechanical ventilation, is required.20 In the United
States, severe sepsis is recorded in 750,000 patients per
year. That number represents 2% of all patients admitted
to the hospital.

Sepsis is associated with microvascular thrombosis and
impairment of anticoagulation mechanisms. Tissue
oxygenation is further impaired by the loss of the
endothelial barrier function.20 Oxygen use is impaired at
the subcellular level because of damage to mitochondria
from oxidative stress.21

vitC is an antioxidant that can improve the
endothelium-dependent response in circumstances such
as chronic smoking, diabetes mellitus,
hypercholesterolemia, and hypertension.22-24 vitC
protects the endothelium by scavenging superoxide,
which in turn prevents nitric oxide scavenging, lipid
peroxidation, platelet and neutrophil activation, and
adhesion molecule upregulation.25 It scavenges
peroxidase-generated reactive nitrogen species and
inhibits low-density lipoprotein oxidation.26 It further
acts as a lipid-soluble antioxidant, scavenging
hydroperoxyl radicals in lipid milieu.27

vitC alone fails to protect endothelial function against
toxic insults. Administration of oral ascorbate

(1,500mg/d) in combination with other antioxidants
failed to decrease mortality in critically ill adults with
multiorgan failure.28 Similar negative results were
observed in a mouse model of sepsis.29,30

The use of glucocorticosteroids (GCs) such as HC in the
treatment of sepsis remains controversial. Short
treatment of gram-negative bacteria with high-dose GCs
in healthy volunteers was ineffective in the majority of
studies.31 GCs failed to attenuate the LPS-induced
coagulation cascade in humans32 and failed to inhibit
LPS-induced nuclear factor-kB translocation in human
monocytes.33 In contrast, stratification of mice according
to levels of circulating interleukin (IL)-6 predicted
mortality as well as the efficacy of GC treatment; mice
with high levels of IL-6 responded to GCs.34

A recent study by Azari et al35 evaluated the protective
effects of HC, vitC, and vitamin E alone or in
combination against renal ischemia/reperfusion injury
in rats. The inevitable injuries may occur after
infarction, sepsis, and organ transplantation, and this
phenomenon exacerbates tissue damage by initiating an
inflammatory cascade including reactive oxygen species,
cytokines, chemokines, and leukocyte activation.36

Combined administration of vitC, vitamin E, and HC
before restoration of blood flow to the ischemic tissue
had a synergistic protective effect against the deleterious
effects of ischemia/reperfusion injury to the kidney.35

In a recent retrospective before/after clinical study, we
compared the outcome and clinical course of patients
with sepsis treated with IV vitC, HC, and thiamine
during a 7-month period (treatment group) compared
with a control group receiving standard-care therapy
during the preceding 7 months. There were 47 patients
in each group with no significant differences in baseline
characteristics. Hospital mortality was 8.5% (four of 47
patients) in the treatment group compared with
40.4% (19 of 47 patients) in the control group.
Sequential Organ Failure Assessment scores decreased in
all patients in the treatment group, with none
experiencing progressive organ failure. These results
suggested that the early use of IV vitC together with
corticosteroids and thiamine is effective in preventing
progressive organ dysfunction, including acute kidney
injury, and reducing the mortality of patients with severe
sepsis and septic shock.3

We recently demonstrated that silencing of p53 in
HLVMECs profoundly disrupts their barrier function.16

To evaluate whether p53 is involved in the “rescue” of
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the LPS-induced vascular dysfunction by the
combination of vitC and HC, we examined the effect of
these compounds in HLMVECs. In line with previous
observations,16 a significant decrease in p53 expression
was observed after 1 hour of LPS treatment, which was
absent in cells pretreated with vitC and HC, reflecting
their protective effect against vascular injury.

Cofilin is an actin-severing protein that is tightly
associated with the regulation of cellular motion and
vascular permeability. Rac1 activation leads to
phosphorylation (deactivation) of cofilin.37

Furthermore, the small guanosine triphosphate RhoA
and its downstream target Rho kinase also regulate
cellular adherence through control of the actin-
cytoskeletal assembly and cell contraction. RhoA directly
phosphorylates MLC2, which in turn can trigger
contraction, resulting in endothelial cell membrane
retraction, intercellular gap formation, and barrier
compromise.38 In the current study, we observed that
LPS resulted in reduced cofilin phosphorylation, ie,

activation and increased RhoA activation and myosin
light chain phosphorylation. This agrees with other
observations and suggests a similar association between
LPS and cofilin or RhoA-induced hyperpermeability.39

Pretreatment of HLMVECs with HC and vitC prevented
the LPS-mediated cofilin and RhoA activation, which is
in agreement with the observed reversal of the LPS-
induced decrease in TEER.

Conclusions
We introduce for the first time, to our knowledge, a
mechanism that is responsible, at least in part, for the
protective effect of the synergistic action of HC and vitC
on LPS-induced hyperpermeability. The aforementioned
findings should be seen in conjunction with a recent
report3 demonstrating that early use of IV vitC, together
with HC and thiamine, are effective in preventing
progressive organ dysfunction due to severe sepsis and
septic shock. Collectively, these findings provide a new
and exciting approach to the management of severe sepsis.
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