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A B S T R A C T   

Evidence exists that heart failure (HF) has an overall impact of 1–2 % in the global population being often 
associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. 
Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with 
vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/ 
cyclic guanosine 3’,5’-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better 
identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced 
(HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardio
vascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, 
producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review 
aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of down
stream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of 
preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract 
NO impaired signalling and cardiovascular disease (CVD) development.   

1. Introduction 

Heart failure (HF) is a clinical syndrome whose diagnosis requires 
the presence of structural and/or functional cardiac anomaly resulting 
in elevated intracardiac pressure and/or insufficient cardiac output at 
rest and/or during exercise. Typical symptoms comprise fatigue, 
breathlessness and ankle swelling. In addition, elevated levels of natri
uretic peptide and evidence of systemic or pulmonary congestion are 
present. Diagnosis is more expected in patients with a story of 
myocardial infarction, diabetes, coronary artery disease, hypertension 
and chronic kidney disease [1]. A classification of HF based on left 
ventricular ejection fraction (LVEF) has recently been introduced. This 
comprises HF with reduced EF (HFrEF, with LVEF ≤40 %), HF with 
mildly EF (HFmrEF, with LVEF 41–49 %) and HF with preserved ejection 
fraction (HFpEF, with LVEF ≥50 %) [2]. In developed countries, thanks 
to better management of cardiovascular disease (CVD), HF incidence is 
approximately 3\1000 person-year, while this data tends to increase 
with age [3]. 

The prevalence also increases with age, from 1 % for patients <55 
years to 10 % for those ≥70 years. A recent observational study, “the 
European Society of Cardiology Heart Failure Long-Term (ESC-HF-LT) 
Registry”, showed that in an ambulatory setting, most of HF patients 
have HFrEF. Studies on hospitalized patients, on the other hand, high
lighted a uniform distribution of patients with HFrEF and HFpEF [3,4]. 

Treatment options for patients with HFrEF have expanded signifi
cantly over the past few decades. 

The core therapeutic approach that has been shown to improve 
survival, decrease risk of hospitalizations and reduce symptoms in pa
tients with HFrEF, includes a triple therapy: angiotensin-converting 
enzyme inhibitors (ACE-I), or an angiotensin receptor-neprilysin in
hibitors (ARNI), associated to beta-blockers and mineralocorticoid re
ceptor antagonists (MRA) [1,5]. 

Neurohormonal modulation is central to the management of patients 
with HFrEF, but other pathways were targeted by drugs with different 
mechanisms of action. Among these, the antidiabetic medications, so
dium glucose cotransporter 2 (SGLT2) inhibitors appear effective in 
preventing CVD [6]. Specifically, in the EMPEROR-Reduced and 
DAPA-HF trials, Empagliflozin and Dapagliflozin, respectively, were 
shown to reduce the risk of cardiovascular death or hospitalization in 
patients with HFrEF, with or without diabetes [7,8]. 

To date, treatment of patients with HFpEF with drugs commonly 
used in HFrEF has not been shown to convincingly reduce mortality and 
morbidity, displaying the contribution of non-cardiac comorbidities as 

LVEF increases. Therefore, management of HFpEF comprise lifestyle 
interventions, (diet, exercise training), management of risk factors and 
comorbidities such as hypertension, diabetes, coronary artery disease, 
obesity, etc., associated with pharmacological therapies [1,9]. 

Loop diuretics remain the cornerstone of HFpEF management as they 
help attenuate volume overload, though thiazide diuretics and/or MRAs 
are helpful in patients with diuretic resistance [10]. More recently, large 
clinical trials showed the beneficial effects of SGLT2 inhibitors on out
comes in HFpEF patients. In particular, the results of 
EMPEROR-Preserved and DELIVER trials revealed that empagliflozin 
and dapaglifozin, respectively, reduce the risk of cardiovascular death 
and hospitalization, suggesting their potential use in patients with 
symptomatic stable HFpEF, regardless of diabetes mellitus [11–13]. 

The mechanisms underlying HFpEF are not yet fully understood and 
many factors are thought to be involved. While HFrEF is primarily due to 
a state of volume overloaded and systolic dysfunction, HFpEF results 
from systemic inflammation induced by concurrent comorbidities [14]. 
This condition leads to the production of reactive oxygen species (ROS) 
by endothelial cells, reduced nitric oxide (NO) availability and 
decreased activation of cyclic guanosine 3’,5’-monophosphate 
(cGMP)-dependent protein kinase (PKG), resulting in concentric 
myocardial hypertrophy and diastolic dysfunction observed in HFpEF 
[15]. 

Evidence of low NO bioavailability and decreased cGMP is also 
present in patients with HFrEF, resulting in impaired vasodilation and 
aerobic exercise capacity, as well as decreased muscle power [16]. 

The identification and characterization of the complex machinery 
generating NO by endothelial cells and its role in endothelium- 
dependent vascular relaxation in 1990 by Salvador Moncada [17] rep
resents a milestone in defining the fundamental mechanisms regulating 
vascular physiology and accommodation of regional blood flow. Indeed, 
the evidence that NO released by endothelial cells is a key player in the 
endogenous relaxation of vascular smooth muscle cells and that this is 
accompanied by a potent anti-platelet action has proven essential to 
understanding the pathophysiology of relevant disease states, including 
atherothrombosis, vascular injury and HF [18]. Furthermore, the iden
tification of the crucial role of NO/cGMP signalling in cardiac contrac
tion and relaxation has contributed to the assessment of intimate 
processes contributing to the pathophysiology of myocardial dysfunc
tion with both reduced and preserved ejection fraction[19,20]. 

Finally, the recent development of NO-modulating molecules that 
potentiate cGMP through the inhibition of specific phosphodiesterases 
(PDEs), has renewed interest in this area, thereby representing potential 
tools in the approach to the treatment of HF [21,22]. 

The present review aims to re-evaluate the role of the NO/cGMP 
pathway in the mechanisms of cardiac contraction and relaxation under 1 These authors contributed equally to this work. 
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basal conditions as well as in myocardial dysfunction and the potential 
for compounds targeting NO/cGMP in the treatment of HF. Finally, the 
emerging role of nutraceutical supplementation in oxidative and nitro
sative stress and NO impairment are reviewed. In particular, we exam
ined the recent preclinical and clinical evidence about the emerging 
therapeutic strategies developed to improve HF outcomes through the 
modulation of altered NO signalling. 

2. Biomolecular mechanisms regulating NO release 

NO is generated via the bioconversion of L-arginine to L-citrulline in 
a reaction catalysed by heme-containing enzymes identified as nitric 
oxide synthase (NOS). This occurs constitutively and Ca2+-dependently 
in endothelial cells (eNOS) and neurons (nNOS), which release nM 
concentrations of this radical. On the other hand, an inducible, Ca2+- 
independent isoform of NOS (iNOS) is expressed in inflammatory cells as 
a consequence of cytokine stimulation, leading to the release of mM 
concentrations of NO [23,24]. 

The regulation of constitutive nNOS and eNOS isoform expression is 
mediated by several mechanisms involving transcriptional, post- 
transcriptional and post-translational modifications, such as acetyla
tion, protein-protein interaction, phosphorylation, S-nitrosylation, and 
S-glutathionylation (Fig. 1) [18,25,26]. 

On the other hand, regulation of iNOS isoform is mainly mediated by 
gene transcription under oxidative stress and pro-inflammatory condi
tions [27]. 

Furthermore, NO generation is known to occur in many tissues, 
including cardiomyocytes, via specific pathways that do not involve the 
bioconversion of L-arginine to L-citrulline [28]. 

The role of NOSs in vascular and non-vascular mechanisms of 

cardiovascular regulation still needs to be clarified. 

2.1. Biosynthesis of NO via the NO-synthase(s) system 

eNOS is a 133 kDa protein encoded by the NOS3 gene, located in the 
7q35–7q36 region of human chromosome 7. At the cardiovascular level, 
eNOS is mainly expressed in vascular and endocardial endothelial cells, 
in cardiac myocytes and also in platelets [29–31]. 

eNOS expression is regulated at different levels. Transcriptional ac
tivators include shear stress and stretch that induce transcription factors 
Nuclear factor-κB (NF-κB) and Krüppel type 2 factor (KLF2), as well as 
ROS, through oxidation of sensitive kinases (i.e., p38 mitogen-activated 
protein kinase) [32,33]. 

Under pathophysiological conditions, DNA methylation is involved 
in the epigenetic regulation of eNOS expression, and several microRNAs 
are involved in post-transcriptional regulation [34,35]. 

In addition, mechanisms such as acetylation, protein-protein inter
action, phosphorylation, S-glutathionylation and S-nitrosylation, are 
involved in post-translational regulation of eNOS activity [18,26,36]. 

Under basal conditions, eNOS is anchored to plasma membranes and 
the perinuclear/Golgi region by co-translational N-myristoylation and 
post-translational palmitoylation of cysteine and is maintained in an 
inactive state within the caveolae, where it can interact with the scaf
folding domain of caveolin 1 (principally expressed in endothelial cells) 
or caveolin 3 (principally expressed in cardiac myocytes) [37,38]. 

Stimulating factors, such as bradykinin, acetylcholine or vascular 
endothelial growth factor (VEGF), result in deacetylation of eNOS and 
an increase of intracellular Ca2+, with detachment of the caveolin–eNOS 
inhibitory interaction. This is followed by Ca2+-calmodulin complex 
binding, recruitment of heat shock protein 90 (HSP90) and serine/ 

Fig. 1. Shear stress and stretch on endothelial function: oxidative/nitrosative stress and eNOS/iNOS modulation. The figure shows the interaction between oxidative 
and nitrosative stress induced by shear stress on endothelial cells and the role of transcriptional and post–translational modulation of eNOS and iNOS in the 
enhancement of endothelial cells damage. 
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threonine protein kinase AKT/PKB. AKT/PKB phosphorylates eNOS on 
Ser1177 (human), which lead to enhanced activity of the enzyme and, 
thus, increased NO production [39,40]. Ser1177 can be phosphorylated 
by other kinases, such as 5′-AMP activated protein kinase (AMPK), 
cAMP-dependent protein kinase (PKA) and 
calcium/calmodulin-dependent protein kinase type II (CaMKII). Phos
phorylation sites Ser615 and Ser633 (by PKA) or Src-dependent phos
phorylation of eNOS on Tyr81, are also associated with increased NO 
production [40,41]. Among negative regulatory sites, phosphorylation 
at Ser114 and Tyr657 have been associated with attenuation in NO 
production [42]. In addition, S-nitrosylation of cysteine residues (Cys94 
and Cys99) suppresses the activity of eNOS enzyme and under agonist 
stimulation, eNOS is quickly denitrosylated with kinetics reflecting the 
observed increase in eNOS activity [43]. Finally, under oxidative stress, 
S-glutathionylation of eNOS reversibly decreases eNOS activity, with a 
concomitant increase in superoxide anion (O2

− ) generation [44]. 

2.2. Inducible nitric oxide synthase (iNOS) 

iNOS is a 130 kDa protein encoded by the NOS2 gene located on 
17q11.2-q12 of human chromosome 17. The level of NO produced by 
iNOS is mainly regulated at the transcriptional level [45]. Oxidative 
stress and inflammation are major transcriptional regulators of iNOS in 
various cell types, including endothelial cells, cardiac myocytes, VSMCs, 
nerve cells, and fibroblasts [46,47]. Unlike eNOS and nNOS, active iNOS 
dimer generates NO independently of intracellular Ca2+ concentrations 
and preserves a high NO production until substrate and cofactor 
depletion or enzyme degradation [48]. Thus, in the cardiovascular 
system, iNOS expression is mainly associated with pathological 
remodelling [49]. 

2.3. NOS-independent release of NO 

NO can be produced independently from NOS by nitrate-nitrite 
pathway. After an intake of nitrate-rich diet (i.e., vegetables such as 
spinach or beet roots), nitrate is rapidly absorbed in the gastrointestinal 
tract. Approximately 25 % of the circulating nitrate is actively extracted 
by the salivary glands and then concentrated and reduced to nitrite by 
nitrate reductase enzymes. The nitrite formed is continuously swallowed 
and may enter the systemic circulation after absorption [50,51]. Sub
sequently, nitrite may be reduced through the nitrite reductase activity 
of different proteins, such as deoxymyoglobin in myocardium and 
vascular wall, deoxyhaemoglobin in erythrocytes, mitochondrial elec
tron transport system, xanthine oxidoreductase (XOR) or even NOSs 
themselves [52–54]. 

In this way, nitrites as a pool of NO can influence different param
eters and processes including platelet aggregation, blood pressure and 
cardioprotection both in HF and ischemia [55,56]. Under ischemic 
conditions, both homogenized rat and human myocardium generate NO 
from nitrite in a XOR activity-dependent reaction [57]. A protective role 
for XOR-catalysed NO production was also demonstrated in a rat model 
of renal ischemia/reperfusion (I/R) injury, in which topical sodium ni
trite administration during reperfusion after bilateral renal ischemia 
significantly attenuated renal dysfunction and injury [58]. This pro
tection was also observed in clinical setting, where low-dose of sodium 
nitrite before ischemia prevented the peak flow-mediated dilation 
decrease [59]. The cardioprotection has been due to mitochondrial 
respiration inhibition and ROS production, and to revascularization 
increase through mechanisms involving the mobilization and migration 
of regenerating endothelial cells, associated with an attenuation of 
myoblast apoptosis [53,60]. Furthermore, mechanisms that may pro
vide beneficial effects of nitrite in I/R injury include decreased platelet 
reactivity and inflammatory cell recruitment, as platelet thrombus for
mation, endothelial protrusion and inflammation underlie of micro
vascular injury after reperfusion [55,61,62]. 

HF with preserved ejection fraction (HFpEF) is characterized by 

exercise intolerance and poor long-term prognosis [63]. Of note, nitrite 
therapy improved LV dimensions and attenuated circulating and cardiac 
brain natriuretic peptide (BNP) levels in mice with Transverse aortic 
constriction (TAC) [64]. In a double-blind, randomized clinical trial, 
acute sodium nitrite infusion in subjects with HFpEF attenuated exercise 
haemodynamic derangements and improved ventricular performance 
with stress [65]. Further nitrite and nitrate clinical applications are 
treated below. Interestingly, in addition to the effect of the gut micro
biome on nitrate reduction, oral supplementation of probiotics such as 
Akkermansia muciniphila improved the endothelial dysfunction in 
ApoE− /− mice through activation of the eNOS\NO pathway [66]. 

3. NO-induced modulation of cardiovascular responses 

NO maintains cardiovascular health by activating two distinct 
pathways: an indirect pathway through the stimulation of soluble gua
nylate cyclase (sGC), which catalyses the intracellular synthesis of cyclic 
guanosine 3’,5’-monophosphate (cGMP) and the activation of PKG, or 
through direct S-nitrosylation of proteins [67,68]. NO is a paracrine 
signalling molecule that can diffuse from endothelial cells to vascular 
smooth muscle cells (VSMCs), vessel lumen, or cardiac myocytes; but it 
can also act as an autocrine signal, especially in cardiac myocytes [69]. 
Paracrine NO signalling is regulated by haemoglobin (Hb) α, expressed 
in human and mouse arterial endothelial cells and in particular at the 
level of myoendothelial junction. There, endothelial Hb α haem iron in 
the Fe3+ state allows NO diffusion, while this signalling is disrupted 
when Hb α is reduced to the Fe2+ state by endothelial cytochrome b5 
reductase 3 (CYB5R3) [70]. Given the high reactivity of NO rather than 
the free radical itself, nitrosylated intermediates have been suggested, 
such as Fe-nitrosyl-heme complexes that could be exchangeable be
tween different heme-containing proteins among which sGC, ensuring 
safer and coordinate delivery of the signal within and between cells 
[71]. In addition to the NOS\NO\GC signalling pathway, a direct 
mechanism of S-nitrosylation has also emerged as a complementary 
pathway in vascular regulation by NO. In the following sections, we 
analysed the role and the regulation of sGC, PKG, and S-nitrosylation 
and the interplay between hydrogen sulfide (H2S) and NOS\NO signal
ling, as well as the crosstalk between the COX and NOS pathways. 

3.1. Soluble guanylate cyclase (sGC) 

sGC is the main NO receptor involved in regulation of several car
diovascular signalling pathways. sGC is an ~150-kDa heterodimer 
composed of α and β subunits, with α1/β1 isoform predominating in 
vascular tissue and an α2/β1 isoform predominating in cardiac and 
nerve cells [72]. Binding of NO to the heme group of sGC induces a 
conformational change that activates the catalytic domain of sGC and 
triggers the formation of the second messenger cGMP from GTP. At the 
intracellular level, cGMP exerts its effects through interaction with a 
group of proteins known as intracellular cGMP receptor proteins [73]. 
The cGMP amount regulation is exerted through PDEs, which in turn 
hydrolyse the phosphodiester bond within cGMP to GMP [74]. In total, 
11 different isoenzymes have been identified, where some PDEs (PDE5, 
PDE6 and PDE9) are selective for cGMP, some are specific for hydrolysis 
of cyclic adenosine monophosphate (cAMP), others hydrolyse both 
(PDE1, PDE2, and PDE3) [75]. The role of cGMP in promoting car
diomyocyte relaxation has increased interest in the development of 
pharmacological interventions to prolong or potentiate the effects of 
cGMP-mediated processes by inhibiting its degradation [76]. Of note, 
PDE2 is the only cAMP hydrolysing PDE that is allosterically activated 
by cGMP [77]. PDE2 inhibition is associated with an antihypertrophic 
effect both in vitro and in vivo, due to cAMP-dependent activation of PKA 
[78]. Several studies have shown that inhibition of cGMP hydrolysis has 
a beneficial effect against cardiac remodelling (reviewed below), 
including in human HF and in mouse models, where PDE5 inhibition 
attenuated cardiac remodelling induced by pressure overload after TAC 
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[79,80]. Importantly, oxidative stress can limit the binding of NO to 
sGC, either through oxidation of its heme Fe2+ to the Fe3+ state or 
through loss of heme, resulting in the accumulation of inactive sGC [81, 
82]. 

3.2. cGMP-dependent protein kinase activation 

cGMP-dependent protein kinase type-I (PKG-I) is a serine/threonine- 
specific protein kinase that is activated by cGMP. PKG-I is implicated in 
the regulation of vascular tone, platelet aggregation and VSMC prolif
eration, through the expression of two isoforms, PKG-Iα (mainly in 
VCMCs and cardiac myocytes) and PKG-Iβ (in platelets) [83]. The 
cGMP-induced smooth muscle relaxation is primarily mediated by 
cGMP-dependent PKG activation that involves different molecular 
events culminating in a decrease in intracellular Ca2+ concentration and 
a reduction in the sensitivity of the contractile system [84,85]. 

An important factor in the regulation of vascular tone is the level of 
myosin light chain (MLC) phosphorylation, which is controlled by the 
balance between Ca2+/calmodulin-dependent myosin light chain kinase 
(MLCK) and myosin light chain phosphatase (MLCP) [86]. PKG-Iα exerts 
its effect on vasodilation through intracellular Ca2+ concentration 
reduction, which decreases myosin light chain kinase activity, and 
instead increases myosin light chain phosphatase activity, both directly 
and by transforming protein RhoA phosphorylation in order to inhibit 
Rho-associated protein kinases (ROCKs); these events lead to a decrease 
of myosin light chain–actin binding [87]. In addition, in VSMC, PKG-Iα 
mediates reduction of intracellular Ca2+ concentration through stimu
lation of large conductance Ca2+-activated K+ (BK) channels, leading to 
a rapid efflux of K+ and membrane hyperpolarization, and inhibition of 
voltage-operated calcium channels (VOCC) [88]. Another mechanism by 
which PKG-Iα mediates dilatation of VSMC is the phosphorylation of 
phospholamban, first demonstrated in isolated rat aorta precontracted 
with norepinephrine, resulting in increased Ca2+/ATPase pump activity 
and reuptake of Ca2+ into the sarcoplasmic reticulum (SR) [88,89]. 
Cardiac PKG-Iα induces relaxation through phosphorylation of both 
L-type calcium channel (LTCC), with decreased calcium currents, and 
phospholamban, with increased Ca2+ reuptake into the sarcoplasmic 
reticulum (SR). Furthermore, NO donor diethylamine-NONOate 
(DEA/NO) was shown to exert negative inotropic and relaxant effects 
in rat ventricular myocytes through a reduction in myofilament Ca2+

sensitivity, mediated exclusively by PKG phosphorylation of troponin I 
[90]. Another phosphorylation site was identified after pharmacological 
activation of PKG-Iα in mice subjected to LV pressure overload (TAC). 
Indeed, PKG-Iα is able to inhibit pathological cardiac remodelling 
through the increase of phosphorylation of myosin-binding protein C 
(MYBPC) at Ser 273 [91]. Of particular note, PKG-I exerts a negative 
feedback control on cGMP concentration, limiting its accumulation in 
VSMCs and in cardiomyocytes induced by NO-donors through PDE5 
activation. Binding of cGMP to a noncatalytic GAF domain of PDE5 and 
subsequent phosphorylation by PKG-I has been shown to enhance PDE5 
activity and maintain activation [92,93]. In human VSMCs, PDE5 acti
vation by 8-Br-cGMP-induced PKG-I activation is associated with PDE5 
dephosphorylation by protein phosphatase 1 (PP1), suggesting that 
phosphorylation/dephosphorylation mechanisms may be key steps in 
the regulation of SM relaxation/contraction cycles [94]. Furthermore, a 
rapid increase in cGMP levels, followed by a rapid cGMP decline, in 
NO-stimulated human platelets, demonstrated that PDE5 phosphoryla
tion is also involved in NO-induced desensitization of the cGMP response 
[95,96]. 

An alternative pathway of PKGIα activation was identified in which 
PKG-Iα is activated in a cGMP-independent manner through the oxida
tion of the Cys42 sites of the dimer, resulting in the formation of di
sulfide bonds [97]. The oxidative activation of PKG-Iα and its role in the 
regulation of blood pressure homeostasis was studied in the knock-in 
(KI) mouse expressing only a "redox-dead" C42S version of PKG-Iα, 
where single atom substitution prevented the vasodilator effect of 

Hydrogen peroxide (H2O2) on resistance vessels and caused hyperten
sion in vivo [98]. Furthermore, it has been observed that the dilatory 
effect of oxidant-induced PKG-Iα activation was due to PKG-Iα trans
location to the cell membrane, opening of smooth muscle BK channels 
and subsequent hyperpolarization and dilation of coronary arterioles 
[99]. In cardiomyocytes, oxidative activation of PKG-Iα maintains 
oxidized PKG-Iα in the cytosol, increasing PDE5 activity. Conversely, 
redox-dead PKG-Iα translocates to the plasma membrane, enhancing 
suppression of the transient receptor potential channel 6 (TRPC6), with 
less hypertrophy and fibrosis [100]. 

3.3. Protein S‑nitrosylation 

S-nitrosylation is a post-translational modification characterized by 
the covalent linkage between a nitrosyl group and a reactive thiol group 
of a cysteine to form S-nitrosothiol (SNO), which plays a key role in NO- 
mediated signal transfer [101]. Furthermore, in the presence of low ROS 
levels, S-nitrosylation not only prevents the binding between NO and 
ROS, but also protects the thiol groups of cysteine from ROS-mediated 
oxidation. However, this protective effect is lost in the presence of 
high levels of ROS, so NO could react with ROS to form reactive nitrogen 
species (for example, peroxynitrite (ONOO-) [101]. There are emerging 
data suggesting that S-nitrosylation of several protein targets plays an 
important role in cardioprotection [102]. Indeed, S-nitrosylation is 
associated with reduced I/R injury through inhibition of LTCC and 
consequent reduced Ca2+ uptake into myocytes, and activation of sar
coplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a), with 
further reduction of cytosolic Ca2+ [103]. At the vascular level, the 
protective effect of S-nitrosylation is mediated by the downregulation of 
CaV1.2 channels, resulting in a significant reduction in blood pressure 
[104]. 

Each NOS isoform can mediate selective S-nitrosylation of target 
proteins and specificity of S-nitrosylation is related to intracellular 
compartmentalization of NOS [105]. For example, eNOS localized 
within the caveolae is close to LTCC, resulting in modulation of Ca2+ flux 
after LTCC S-nytrosylation, whereas nNOS colocalization with the rya
nodine receptor (RyR) modulates SR Ca2+ cycling [106]. In particular, 
in skeletal muscle, hyper-nitrosylation of RyR has been shown to causes 
SR calcium leak and calstabin-1 depletion, contributing to muscle 
weakness in muscular dystrophy [107]. The importance of cardiac RyR 
S-nitrosylation was highlighted in a study by Gonzalez et al., in which 
nNOS depletion was associated with decreased S-nitrosylation and 
increased RyR oxidation, resulting in increased diastolic Ca2+ and 
depression of myocardial contractility [108]. 

Furthermore, S-nitrosylation has a directly effect on NOS signalling. 
S-nitrosylated sGC showed reduced sensitivity to NO-induced activation 
[109]. Of note, sGC desensitization, through S-nitrosylation 
nitroglycerin-dependent, is the basis of tolerance to nitrates [110]. An in 
vitro study showed that S-nitrosylation of dihydrofolate reductase 
(DHFR), mediated by S-nitrosoglutathione (GSNO), a NO donor, pre
vented DHFR degradation and eNOS uncoupling via regeneration of 
tetrahydrobiopterin (BH4), an essential eNOS cofactor [111]. The bal
ance between S-nitrosylation and denitrosylation is modulated through 
NOS and S-nitrosoglutathione reductase (GSNOR) enzyme activity, 
respectively. Mice lacking GSNOR (GSNOR− /− mice), showed increased 
cardiomyocyte proliferation and recovered better than wild type mice 
post-myocardial infarction (MI) [112]. Furthermore, GSNOR deficiency 
was recently shown to promote cardiomyocyte differentiation and 
maturation, and to accelerate induced pluripotent stem cell (iPSC) 
maturation, further supporting the cardioprotective role of S-nitro
sylation [113]. Conversely, GSNOR overexpression prevents patholog
ical left ventricular hypertrophy (LVH) induced by chronic β-adrenergic 
receptor (β-AR) activation [114]. Therefore, maintaining the balance 
between S-nitrosylation and denitrosylation is essential for proper NOS 
\NO regulation of vascular tone and cardiac contractility [115]. 
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3.4. H2S and NOS signalling modulation 

In the last decade, the role of H2S, a gaseous mediator, has been 
recognized as an important regulator of the vascular system and in 
particular, as an enhancer of vascular NO signalling [116]. At the 
vascular level, H2S production is mainly catalysed by three enzymes: 
cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), 3-mercap
topyruvate sulfurtransferase (3-MST) using L-cysteine or homocysteine 
as substrates [117,118]. 

H2S has been shown to acts as an enhancer of the eNOS\sGC\cGMP 
\PKG pathway by targeting NO production and its downstream signal
ling. In endothelial cells, H2S doubles the NO generation from eNOS, 
promoting eNOS activation through phosphorylation at Ser1177 by AKT 
[119]. In addition, H2S is able to increase NO production in an 
eNOS-independent manner, involving XOR-reduction of nitrite in NO, 
suggesting a potential role of H2S in the therapeutic enhancement of 
nitrite supplementation [120]. An in vitro study showed that H2S also 
exerts an antioxidant effect, reducing the amount of ferric cytosolic 
guanylate cyclase (cGC) and increasing the amount of NO-sensitive 
ferrous cGC [121]. Acting on downstream signalling mediators, evi
dence indicates that H2S exerts a vasodilatory effect through inhibition 
of cGMP degradation, specifically by acting as a PDE5i [122,123]. 
Another layer of interaction between H2S and NO signalling occurs at 
the level of PKG activation, through H2S-catalyzed formation of an 
activating interprotein disulfide within PKG-Iα [124]. 

This cooperative interaction between H2S and NOS signalling ap
pears to enhance the NOS-dependent cardioprotective and vasodilatory 
effects, as demonstrated in a mouse model of I/R injury, in which H2S 
pre-treatment reduced infarct size, thus suggesting a potential thera
peutic approach for H2S precursors (reviewed below) [125]. 

3.5. COX-modulation by NO 

The NOS and cyclooxygenase (COX) pathways produce important 
mediators of tissue homeostasis and pathophysiological processes, 
sharing several similarities. Both NOS and COX have constitutive and 
inducible isoforms. Cyclooxygenase-2 (COX-2) is the inducible form of 
the COX enzyme, whose synthesis is triggered by the same cytokines that 
also induce iNOS, involved in a large production of proinflammatory 
prostaglandins (PGs) at the site of inflammation [126,127]. 

The COX pathway catalyses the conversion of arachidonic acid to 
prostaglandin H2 (PGH2), mediated by both cyclooxygenase-1 (COX-1) 
and COX-2, which is subsequently converted to a variety of prosta
glandins, such as prostaglandin E2 (PGE2), prostaglandin F2 (PGF2), 
thromboxane A2 (TXA2) and prostaglandin G2 (PGI2), by specific 
isomerase enzymes [128]. 

Therefore, in inflammatory states, NO and PGs are released simul
taneously in micromolar amounts, suggesting the involvement of both in 
the pathogenesis of many disease states. 

Furthermore, several lines of evidence suggest a constant crosstalk 
between NO and PG release that occurs at different levels [129]. 

Indeed, NO can directly interfere with COX expression and PG 
biosynthesis and PGs generated from COX isoforms can interfere with 
NOS activity [130]. 

In 1993, Salvemini et al. demonstrated for the first time that COX 
activity is modulated by NO [131]. In this study, exogenous NO appli
cation was shown to increase COX-1 activity both in vitro and in vivo, 
leading to a 7-fold increase in PGE2 formation. In the same study, 
exposure of IL-1β-stimulated fibroblasts to NO gas or NO donors 
increased COX-2 activity at least 4-fold, suggesting that COX regulation 
by NO is a potent mechanism used to amplify the inflammatory response 
[131]. Subsequently, exposure of endothelial cells to NO donors (glyc
eryl trinitrate, sodium nitroprusside, or 3’-morpholinosydnonimine) 
was shown to increase COX activity and PGI2 release, inhibiting 
thrombin-induced platelet aggregation at least 10-fold [132]. Therefore, 
NO (and NO donors) exert vasodilatory and antithrombotic effects both 

by activation of sGC and cGMP increase and by activation of COX-1 in 
endothelial cells with prostacyclin formation and cAMP increase [133]. 
Given the increased COX-1 and COX-2 activity NO induced, the study 
investigated whether the endogenously produced NO was also able to 
modulate COX-2 activity. For this purpose, RAW-264.7, a macrophage 
cell line, was stimulated with lipopolysaccharide (LPS) to induce iNOS 
and COX-2 activity and the consequent production of a large amount of 
NO and PGs, respectively [134,135]. 

Treatment with selective and non-selective iNOS inhibitors, as ex
pected, reduced NO production from these cells. Of notable importance 
was the observation that inhibition of NO production was associated 
with inhibition of PG production, suggesting that NO endogenously 
released from macrophages stimulated COX-2 activity independently of 
its known effects on sGC. In fact, methylene blue-mediated sGC inhibi
tion reduced cGMP production in fibroblasts without influencing the 
ability of NO to induce COX activity and PGs production [ 131,132]. 

Several studies have shown divergent effects of NO on COX isoforms. 
Indeed, NO was observed to down-regulate PGE2 release, associated 
with reduced COX-2 expression, both in LPS-stimulated macrophages 
and in COX-1 deficient cells [136]. 

On the other hand, COX inhibition by aspirin or indomethacin, has 
been associated with reduced NOS activity in human platelets. This ef
fect was mediated by thromboxane A2 inhibition or reduction in intra
cellular Ca2+ [137]. 

The evidence above indicates that the modulatory effect of NO on 
COX activity may differ according to the cell type used for experimental 
procedures and to the nature and intensity of the stimulus leading to 
activation of PGs biosynthesis [129]. 

Therefore, knowledge of the molecular mechanisms underlying NOS 
and COX activation is fundamental for understanding the mutual in
teractions between NO and COX. As first reported by Tsai et al., there is 
no evidence of a significant direct interaction between NO and the heme 
prosthetic group of COX enzyme [138]. Other mechanisms have been 

Fig. 2. Modulation of COX activity by NO. NO increases COX activity through 
the interaction with superoxide anion and the subsequent reduction of negative 
feedback mechanism, the formation of nitrothiols by S-nitrosylation of cysteine 
residues in the catalytic domain of the enzyme and the formation of ONOO-, 
which in turn enhances COX activity and PGs production. In addition, ONOO- 

mediates the activation of COX enzymes through the oxidative modification of 
tyr residue in the polypeptide backbone. Furthermore, ONOO- can oxidize the 
COX substrate arachidonic acid, producing vasoconstrictors F2-isoprostanes, 
and consequently reduce prostacyclin production. 
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proposed to explain the modulation of COX activity by NO (Fig. 2). 
Since COX activity is associated with the production of superoxide 

anions, which through a negative feedback mechanism inhibits its 
activation; it has been proposed that NO, acting as an antioxidant, in
creases COX activity [139]. In particular NO, interacting with super
oxide anion, reduces the amount of radical normally necessary for COX 
auto-inactivation. 

A second proposed mechanism is the formation of nitrothiols by NO- 
mediated S-nitrosylation of cysteine residues in the catalytic domain of 
COX enzymes. This mechanism determines COX activation in a heme- 
independent manner [140]. The third mechanism proposed is the for
mation of ONOO-, the product of reaction of NO with superoxide radical 
[141]. ONOO- activates in vitro COX-1 and COX-2 activity [142]. In 
arterial smooth muscle cells, addition of exogenous ONOO- activates 
COX-1 and PGE2 production [143]. The mechanisms involved in 
ONOO--mediated activation of COX enzymes have yet to be defined but 
could involve oxidative inactivation or modification of key amino acid 
residues in the polypeptide backbone. Furthermore, ONOO- can oxidize 
the COX substrate arachidonic acid, producing vasoconstricting 
F2-isoprostanes, and can block prostacyclin synthase activity and 
thereby reduce prostacyclin production [144]. ONOO- is also involved in 
NF-κB activation that is a potent inducer of COX-2 and iNOS in inflamed 
cells [129]. A final proposed mechanism is that iNOS itself binds to 
COX-2 and S-nitrosylates at the Cys-526 residue, improving its catalytic 
activity. This interaction is specific for COX-2, because iNOS does not 
have an interaction with COX-1 [144]. It has been highlighted that iNOS 
is essential for the enzymatic activity of newly synthesized COX-2 in 
cardiac tissue during myocardial ischemia. In particular, in 
morphine-induced delayed cardioprotection model, the infarct-sparing 
effect after morphine administration was completely abolished by the 
COX-2-specific inhibitor. Furthermore, knockout (KO) of the iNOS gene 
or iNOS selective inhibitor administration did not attenuate the 
increased COX-2 expression after morphine pre-treatment, but 
completely abolished the upregulation of myocardial PGE2 and 6-keto
prostaglandin F1alpha (6-keto PGF1α) [145,146]. 

Since NO-mediated COX regulation is a potent mechanism for NO 
modulation of inflammatory response progression, a more complete 
understanding of the molecular mechanisms involved in COX-NO 
crosstalk regulation will allow the identification of important molecu
lar targets for future pharmacological interventions. 

NOS, nitric oxide synthase; NO, nitric oxide; COX, cyclooxygenase; 
ONOO-, peroxynitrite; PG, prostaglandin; O2

- , superoxide; OH-, hydrox
ide; Cys, cysteine; Tyr, tyrosine; AA, arachidonic acid; F2-IsoPs, F2- 
isoprostanes. 

4. Role of NO in myocardial contraction/relaxation 

Several in vivo studies using pharmacological mechanisms of inhi
bition or genetic deletion with loss of NOS (nNOS and eNOS) function 
have shown more severe myocardial damage after I/R injury [147–149]. 

In contrast, upregulation of cardiac-myocyte NOS expression pro
duces significant protection to counteract the I/R damage, by the pre
vention of mitochondrial permeability transition pores opening [150]; 
in particular, eNOS [151] and nNOS [152] overexpression results in 
improved left ventricular (LV) function and in the reduction of infarct 
size [148]. 

In vitro and in vivo evidence suggests that the eNOS inhibition in I/R 
injury is due to the activation of cardiac Proline-rich tyrosine kinase 2 
(PYK2), a redox-sensitive kinase [153]; that leads to the phosphoryla
tion of a tyrosine residue (Tyr656 mouse sequence; Tyr657 human 
sequence) of eNOS [154]; consequently, the pharmacological inactiva
tion of PYK2 could represent a potential target in cardiac I/R damage 
reduction [23,155,156]. 

Protection from myocardial damage following I/R injury, exerted by 
NOS activity, is achieved via different overlapping mechanisms and 
molecular pathways. These include inhibition of the LTCC mediated 

through Cav1.2 and the consequent reduction of Ca2+ accumulation 
[157], mitochondrial reduction of reactive oxygen species production by 
cytochrome-c oxidase (CcO) activity [158–161], reduction of reactive 
oxygen species production induced through the modulation of XOR 
activity [162] and upregulation of mitochondrial ATP-sensitive potas
sium (mitoKATP) channels (Fig. 3) [163,164]. 

Indeed, in vivo studies demonstrate that the opening of mitoKATP 
channels plays a key role in cardioprotection during late ischemic pre
conditioning through Akt/PI3 kinase signalling and iNOS and eNOS 
activation, which produce significant cardiac function improvement 
[145,165,166]. 

Various studies showed that nNOS exerts its cardioprotective activ
ity, following I/R injury and MI, through translocation from the sarco
plasmic reticulum (SR) to different subcellular compartments [167], 
such as mitochondria or sarcolemma [168]. In particular nNOS plays a 
key role in the regulation of SR Ca2+ release and reuptake [169]. 

In addition, nNOS translocation to the plasma membrane suggests an 
adaptive mechanism to reduce (by LTCC inhibition) the pathological 
remodelling of the left ventricle in HF due to the harmful effects of 
chronic β-adrenergic stimulation [103,167]. 

However, modulation of NOS/NO signalling in myocardial damage 
following I/R injury is controversial; both beneficial and adverse effects 
of NOS activity have been described [145]. 

Indeed, since ONOO– synthesis reduction prevents the increase of NO 
production in early reperfusion, the dysregulation of NOS and the NOS 
uncoupling could exacerbate cardiac tissue damage during I/R injury, 
thus producing superoxide anion (O2

- instead of NO), with the subse
quent production of ONOO– [170,171]. 

In this context, oxidation of BH4 to dihydrobiopterin (BH2) induced 
by ROS and reactive nitrogen species (RNS) and the imbalance of BH4/ 
BH2 ratio leads to the amplification of myocardial injury, propagating 
NOS uncoupling [172,173]. Several studies have suggested that phar
macological supplementation of BH4 could play a key role in the NOS 
coupling improvement, thus maintaining nitric oxide bioavailability 
[18,174–179]. 

In this case, the role of iNOS remains unclear. iNOS could be 
responsible for RNS in MI and in hypertrophic remodelling that results 
from pressure overload [180,181]. However, iNOS can exert its activity 
through the inhibition of mitochondrial oxidative stress production, 
mainly by the down-regulation of opening and swelling of the mito
chondrial permeability transition pore (MPTP) [150,182,183]. 

In support of iNOS protective activity, there are several studies 
showing that constitutive NOS and iNOS are able to confer beneficial 
effects in ischaemic preconditioning through regulation of different 
mechanisms ranging from inhibition of cytosolic Ca2 + accumulation 
exerted by the S-nitrosylation of many Ca2+ channels [184,185], such as 
RYR2 [186,187], LTCC [158–161] and SERCA2a, to upregulation of 
mitoKATP channel opening [ 163,164]. 

Evidence suggests that SNO inactivates mitochondrial Complex I, 
which is the entry point for nicotinamide adenine dinucleotide phos
phate (NADPH) electrons into the respiratory chain through various 
mechanisms [188,189]. Indeed, peroxynitrite is able to oxidize different 
amino acid residues, with the highest reactivity versus the cysteine 
residue. In particular, since rapid complex I reactivation plays a crucial 
role in the pathological onset of I/R tissue damage, reversible inhibition 
of Complex I through the Active/De-active (A/D) transition [188,190] 
represents a protective mechanism and a potential therapeutic strategy 
for in vivo reduction of myocardial, brain, and skeletal muscle damage 
after I/R injury [191–193]. Again, eNOS exerts beneficial effects in 
cardiac remodelling, preventing myocyte hypertrophy development and 
cardiac fibrosis [194]. Regarding the effects of nNOS and eNOS activity 
in myocardial tissue, several studies showed that modulation of NOS 
enzymes has a beneficial role in atrial fibrillation reduction [195]. 
Myocardial nNOS depletion might represent a molecular mechanism 
upstream of atrial fibrillation maintenance in humans [196]. In addi
tion, nNOS has a protective in vivo activity, reducing ventricular 
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arrhythmias induced by MI [197]. The beneficial effect of nNOS is 
mainly due to the inhibition of LTCC opening and S-nitrosylation protein 
induction [197]. The dual role of nNOS and eNOS in pathological 
remodelling reduction or aggravation, respectively, might be due to the 
haemodynamic stress degree and the consequent NOS uncoupling 
exacerbated by oxidative stress [198]. Moreover, in vivo data suggest 
that constitutive NOS could modulate the myocardial reaction to 
oxidative stress and β3-adrenergic stimulation, showing a loss of 
myocardial function and a significant enhancement of pathological left 
ventricular remodelling due to nNOS deletion [198,199]. In car
diomyocytes, the β3-adrenergic receptors (β3-ARs) are coupled to 
constitutive NOS and play a crucial role in cardiovascular function 
regulation: their activation produces LTCC stimulation and increases the 
atrial contractility [200,201]. An in vivo study that examined the regu
lation of molecular mechanisms involved in the β3-NO pathway high
lighted the key role of β3-adrenergic receptors in direct negative 
inotropic NO-mediated responses [202]. 

4.1. Dysfunctional NO signalling in cardiovascular system 

RNS production that includes ONOO− and NOS uncoupling repre
sents the main mechanisms involved in dysfunctional NO signalling 
[203,204] (Fig. 4). 

4.1.1. NOS uncoupling mechanisms 
NOS is an enzyme that in physiological conditions, when is coupled 

to substrate L-arginine and its cofactors such as BH4, plays a crucial role 
in cardiovascular homeostasis. Its uncoupling, due to the oxidation of 

BH4 to BH2, results in the superoxide production and the consequent 
formation of RNS [205,206]. 

Experimental in vitro and in vivo studies suggest that rather than the 
BH4 oxidation to BH2, the BH4:BH2 ratio could play a pivotal role in 
NOS uncoupling [191]. Indeed, in NIH 3T3 murine fibroblasts which 
express eNOS with low biopterin levels, the reduced BH4:BH2 ratio 
amplified eNOS uncoupling [207,208]. 

A recent clinical study conducted in coronary artery disease (CAD) 
patients highlighted the role of intracellular BH4 oxidation and BH4: 
BH2 ratio, showing the adverse effects of superoxide and peroxynitrite 
on cellular activity, due to NOS uncoupling [174]. Additionally, severe 
NADPH depletion caused by CD38 activation occurring in the post
ischemic heart can affect NOS function and impair NADPH-dependent 
BH4 synthesis, leading to endothelial dysfunction [209]. 

However, in vitro and in vivo studies have demonstrated that BH4 also 
exhibits a direct NOS-independent antioxidant activity that could be 
essential for adaptive vascular endothelial function secondary to 
inflammation and O2

- production through Complex I of the mitochon
drial respiratory chain [210]. Indeed, it has been observed that BH4 
supplementation in vivo was able to produce cardioprotective effects, 
reducing myocardial inflammation [211]. 

4.1.2. Iron deficiency (ID) and reactive nitrogen species 
Under physiological conditions, there is a balance between forma

tion and scavenging of ROS/RNS, in which iron plays a crucial role: 
indeed, the dysregulation of iron homeostasis, such as iron overload and 
iron deficiency, induces oxidative and nitrosative stress through 
different mechanisms [212]. 

Fig. 3. NOS activity and mechanisms of myocardial damage protection following ischemia/reperfusion (I/R) injury. eNOS reduces myocardial damage through the 
reduction of Ca2 + accumulation due to the inhibition of the LTCC mediated by Cav1.2 and induces the opening upregulation of mitoKATP channels, which play a key 
role in the cardioprotection through the Akt/PI3 kinase signalling. In addition, nNOS produce a decrease of mitochondrial-derived and sarcoplasmic reticulum- 
derived Reactive Oxygen Species production by the enhancement of cytochrome-c oxidase activity and the modulation of XOR activity, respectively. eNOS, endo
thelial nitric oxide synthase; nNOS, neuronal nitric oxide synthase; NO, nitric oxide; sGC, soluble guanylyl cyclase; GTP, guanosine-5’-triphosphate; cGMP, cyclic 
guanosine monophosphate; PKG, protein kinase G; mitoKATP, mitochondrial ATP-sensitive potassium; O2

- , superoxide; O2, oxygen; K+, potassium ion; LTCC, L-type 
calcium current; RyR2, ryanodin receptor 2; XOR, xanthine oxidoreductase. 
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In particular, ID can induce the dysregulation of several iron-based 
enzymes [213]; in vitro evidence suggests that ID is associated with 
mitochondrial Complex IV activity reduction, thus inducing Complexes 
I–III reduction [214] and the consequent ROS formation [215]. In 
addition, the increase in inflammatory mediators caused by ID leads to 
activation of leukocytes, resulting in ROS and RNS production [216]. 

Several in vivo and clinical studies showed that ID produces NOS- 
upregulation and increases NO levels [217,218]. In addition, anaemic 
rats show high concentrations and activities of vascular and renal eNOS 
and iNOS [218] and enhanced NADPH oxidase, suggesting that the 
ONOO− formed as a result of ID could induce nitrosative stress, inferred 
from the high nitrotyrosine levels [219]. 

Further clinical studies have been observed the significant inhibition 
of antioxidant enzymes, such as superoxide dismutase (SOD), catalase 
and glutathione peroxidase (GPx) in patients with ID and the consequent 
restoration of their normal levels following iron replacement therapy 
[220]. 

4.1.3. Asymmetric dimethyl arginine (ADMA) 
In cardiomyocytes, the maintenance of homeostatic conditions and 

NOS coupling is established for an extracellular L-arginine concentration 
at least of 100μmol/l [221]. 

However, uncoupling of all NOS isoforms could also be a result of 
competition for L-arginine with arginase and arginine methyltransferase, 
which in turn transforms L-arginine in urea and L-ornithine or ADMA 
[222], a product that attenuates NO production by NOS, inducing su
peroxide production [222,223]. 

Several studies showed that increased ADMA levels were responsible 
for eNOS uncoupling, oxidative stress and inflammation. Again, high 
plasma levels of ADMA were associated with different cardiometabolic 

dysfunctions, such as congestive heart failure, coronary artery disease, 
hypertension, atherothrombosis and diabetes mellitus [224,225]. 
Therefore, the ADMA value might be an independent, prognostic 
biomarker of CVD [226]. 

4.1.4. S-glutathionylation 
Under pro-oxidative conditions, the dysregulation of vascular func

tion can be caused by NOS uncoupling triggered by S-glutathionylation, 
which consists of the reversible post-translational formation of a mixed 
tripeptide glutathione (GSH) and a thiol protein through the creation of 
a disulfide bond [227], the S-glutathionylation site in human NOS 
reductase domain, Cys689 and Cys908, which prevents the electron 
transfer between the flavins and prompts the reductase domain to pro
duce O2-. When the GSH: Glutathione disulfide (GSSG) is restored, 
S-glutathionylation can be reversed, suggesting that the NOS uncoupling 
produced by S-glutathionylation may be a temporary adaptive mecha
nism to decrease NO synthesis, thus avoiding the irreversible nitrosative 
stress induced by ONOO- overproduction [228]. 

4.1.5. Caveolin and NOS inhibition 
In the modulation of endothelial and cardiac function, a crucial role 

is exerted by caveolin, a structural protein of caveolae involved in the 
regulation of inflammation and NO-mediated oxidative stress [229]. 

The caveolin scaffolding domain binds to different molecules, 
including eNOS, Akt, protein kinase C (PKC) and PKA, which play a key 
role in the vascular wall regulation and myocardium inflammation. 
[230]. 

It has been shown that Caveolin-1 could have a dual activity in 
vascular modulation: it is known that Caveolin-1 inactivates eNOS 
through its calcium-calmodulin site binding, with subsequent inhibition 

Fig. 4. NO/sGC/cGMP signalling impairment and cardiac and endothelial dysfunction. RNS production, that includes ONOO− and O2
- , NOS uncoupling, NOS in

hibition and inflammation, induced by S-glutathionylation, Caveolin binding, BH4 oxidation, High ADMA levels and Iron deficiency, are the mainly mechanisms 
involved in dysfunctional NO/sGC/cGMP signalling. The impairment of NO/sGC/cGMP signalling is responsible for inflammation, fibrosis, hypertrophy and ven
tricular remodelling at cardiac level and inflammation, vascular stiffness and vascular remodelling at endothelia level. NOS, nitric oxide synthase; NO, nitric oxide; 
sGC, soluble guanylyl cyclase; cGMP, cyclic guanosine monophosphate; RNS, reactive nitrogen species; ROS, reactive oxygen species; BH4, tetrahydrobiopterin; 
ADMA, asymmetric dimetilarginine. 
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of its translocation and phosphorylation [231], thus reducing NO gen
eration and increasing endothelial dysfunction [232,233]. 

Moreover, Caveolin-1 knockdown induces NO over-production that 
leads to the generation of RNS, thereby impairing endothelial function 
[232,233]. 

Toll-like receptor 4 (TLR4) represents the main regulator of 
Caveolin-1 activity, playing a key role in vascular inflammation through 
the phosphorylation of its Tyr14 residue and the subsequent inhibition 
of NO production by eNOS. On the other hand, TLR4 induces NF-κB 
activation, which in turn activates iNOS, leading to vascular inflam
mation initiation and VSMCs proliferation [234]. 

Evidence suggests that the increased production of oxidized low- 
density lipoprotein in metabolic disorders upregulates Caveolin-1 
[235]. The consequent over-expression of lectin-like oxidized 
low-density lipoprotein receptor-1 (LOX-1) is associated with the 
translocation of NF-kB, which in turn activates iNOS and COX enzymes 
[235]. 

In addition, Sirtuin-1, a NAD-dependent protein deacetylase, plays a 
key role in Caveolin-1 activity modulation and endothelial dysfunction, 
both regulating Caveolin-1 expression and mediating NOS deacetylation 
at residues of lysine, with a reduction of inhibitory eNOS in caveolae 
[236]. The deletion or the inhibition of Sirtuin-1 leads to CVD devel
opment [237]. 

4.1.6. NO/sGC/cGMP signalling impairment 
Under physiological conditions, NO binds the heme group of the 

β-subunit of heterodimer sGC. Oxidative stress induces oxidation of the 
sGC heme group (from Fe2+ to Fe3+), thereby desensitizing the enzyme 
to NO stimulus. Furthermore, ROS production is NO-dependent, 
inducing thiol-oxidation and cysteine nitrosylation of sGC, thus 
decreasing its activity. Both mechanisms interfere with NO/soluble 
guanylyl cyclase/cyclic GMP (NO/sGC/cGMP) signalling, as observed in 
several diseases [238,239]. 

A study conducted in rat aortic VSMC cells showed that CYB5R3 

regulates sGC activity through the reduction from Fe3+ to Fe2+, restoring 
NO/sGC/cGMP signalling, thereby sensitizing the enzyme to NO binding 
[240,241]. 

On the other hand, in a smooth muscle cell-specific CYB5R3 KO 
mouse model, loss of CYB5R3 exacerbates angiotensin II-induced hy
pertension through the increase of sGC heme oxidation [242]. 

Furthermore, a recent study tested the protective role of CYB5R3 in 
chronic hypoxia caused by biventricular hypertrophy, blunted vasodi
lation to NO-dependent activation of sGC in coronary and pulmonary 
arteries and decreased cardiac function in CYB5R3 KO mice; the results 
showed cardiac remodelling and functional changes with impaired 
cardiac function in KO mice [243]. 

In addition, in Apo-sGC mice, an in vivo model to study the conse
quences of sGC oxidation and the therapeutic effects of sGC activators, 
the activation of heme-containing reduced sGC is a fundamental 
mechanism to induce vasorelaxation, platelet aggregation inhibition 
and NO-mediated blood pressure modulation [244]. 

Moreover, in vitro and in vivo studies demonstrated that sGC S- 
nitrosylation of the β-subunit (Cys122) could be another mechanism 
able to disrupt the sensitivity of sGC to exogenous NO donors, thus 
producing nitrate tolerance [110,245,246]; therefore, in the cardiovas
cular oxidative disease development, the nitrosylation of sGC could 
represent the connecting thread between NO-related oxidative stress 
and NO tolerance [109]. 

5. Emerging therapeutic strategies in NO signalling modulation 

The sections below will describe different therapeutic approaches 
used to modulate impaired NO signalling underlying CVD development, 
in order to restore its physiological production and regulate downstream 
pathways (Fig. 5) (Table 1). 

Fig. 5. Emerging therapeutic strategies in NO/sGC/cGMP signalling modulation. Different therapeutic approaches are used to modulate impaired NO signalling and 
to regulate downstream pathways, underlying cardiovascular diseases development, in order to restore NO production, bioavailability and physiological activity. 
Folate and BH4 supplementation, as well as β3-AR agonists and H2S, act by restoring and stimulating NOS activity; nitrate and nitrite supplementation acts directly 
by improving NO bioavailability; sGC stimulators and activators play a key role in the modulation of sGC activity and cGMP production; PDE5i and H2S inhibit PDE5 
activity, thus increasing cGMP bioavailability and PKG production. NOS, nitric oxide synthase; NO, nitric oxide; sGC, soluble guanylyl cyclase; GTP, guanosine-5’- 
triphosphate; cGMP, cyclic guanosine monophosphate; GMP, guanosine monophosphate; PKG, protein kinase G; BH4, tetrahydrobiopterin; DHFR, dihydrofolate 
reductase; H2S, hydrogen sulfide; PDE5i, phosphodiesterase type 5 inhibitors; β3-AR, beta 3 adrenergic receptor; ONOO-, peroxynitrite; O2

- , superoxide. 
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Table 1 
Schematic representation of emerging therapeutic strategies in NO/sGC/cGMP signalling modulation in preclinical and clinical studies.  

Therapeutic strategies Study 
Type 

Properties Molecular mechanism References 

PDE5i-Sildenafil Clinical Improvement of myocardial contractility; 
Attenuation of myocardial remodelling; 
Modulation of haemodynamic state 

↑ cAMP/PKA activation; 
↑ [Ca2+]i; 
↓ cGMP 
degradation 

[250],[260],[262] 

In vivo Cardioprotective activity against I/R injury; 
Attenuation of TAC-induced myocardial oxidative 
stress 

iNOS-mediated mitoKATP channel 
opening; 
PKG activation; 
Inhibition of Rho/Rho-kinase 
pathway; 
↓PDE5 expression 

[251–254],[256] 

PDE5i-Icarin In vitro Cardioprotective effects against doxorubicin-induced 
cardiotoxicity 

Restoration of eNOS/iNOS rate [257] 

PDE5i-Tadafil Clinical Cardioprotection PKG-dependent generation of H2S [258],[259] 
sGC activator-Cinaciguat In vivo ↓ Cardiac preload and afterload; 

↑ Cardiac output; 
↓ Right ventricular hypertrophy remodelling 

Direct binding to oxidized, heme-free 
sGC; 
↑cGMP 

[274],[276],[277],[278] 

sGC activator-Ataciguat In vivo Improvement of endothelial function and platelet 
hyperaggregation; 
↓Atherosclerosis 

[259],[275] 

sGC stimulator-Riociguat In vivo ↓ Infarct size; 
Improvement in LV systolic function 

Direct binding to reduced, heme- 
containing, sGC; 
↑cGMP 

[79] 

Clinical Prolongation of 6MWT distance; 
↓NT-proBNP; 
↓ Pulmonary vascular resistance; 
↓ Right heart size; 
Improvement of diastolic function 

[280,282-284] 

sGC stimulator-Vericiguat Clinical ↓ HF hospitalization and mortality in HFrEF patients [285,287] 
BH4 supplementation In vivo ↓Oxidative stress; 

↓ Cardiac hypertrophy; 
↓ Endothelial dysfunction; 
↓ Ventricular dysfunction 
eNOS-dependent coronary flow restoration 

↓ eNOS uncoupling [289],[290],[291],[292], 
[206] 

Clinical Improvement of endothelial-dependent 
vasodilatation; 
↓ Macrovascular dysfunction in patients with HFpEF 

Restoration of NO activity [293],[294],[295] 

Folate supplementation In vitro ↓ Endothelial dysfunction ↓ Homocysteine; 
↑ BH4 and NO bioavailability; 
↓ Superoxide anion; 
BH4 stabilization or regeneration from 
BH2; 
Direct binding to the active site of 
eNOS enzyme 

[300],[301] 

Clinical Improvement of NO-dependent vasodilation; 
↓Risk of stroke 

↑ NOS coupling and NO 
bioavailability; 
↓ Vascular oxidative stress; 

[302],[303],[305] 

Iron supplementation- Ferric 
carboxymaltose 

Clinical Improvement of functional capacity; 
↓inflammation and re-hospitalization in HFrEF 
patients; 
Improvement of exercise capacity and endothelial 
function in HFpEF patients 

↓ Oxidative and nitrosative stress [310],[311],[313] 

Nitroxyl (HNO) In vivo Inotropic and lusitropic effects; 
Vasodilation 

↑ SERCA activity and activation of 
RyR2; 
↑Ca2+ responsiveness of cardiac 
myofilament proteins; 
Activation of sGC/cGMP signalling; 
Superoxide-suppressing activity 

[317],[318],[319],[320], 
[321],[322] 

Nitroxyl (HNO) donors-CXL-1020 Clinical ↓ Left and right heart filling pressures; 
↓ Systemic vascular resistance 

[324] 

HNO donors (BMS-986231) Clinical ↓ Pulmonary capillary wedge pressure (PCWP) in 
HFrEF patients; 
↓Pulmonary arterial diastolic pressure (PADP); 
↓ Pulmonary arterial systolic pressure (PASP) 

[325],[326],[327] 

Nitrate–nitrite supplementation Clinical ↓ blood pressure; 
↓ carotid intima-media thickness (IMT); 
↓ MI size 

↑ NO production independently from 
NOS; 
↓ ROS production; 
↓ pro-inflammatory neutrophil 
activation 

[56],[329],[330],[333], 
[334] 

Hydrogen sulfide In vivo Restored the ischemic blood flow; 
↑ Angiogenesis; 
↓ Infarct size; 

↑ NOS expression; 
↑ VEGF and HIF-1α activity; 
↓ PDE5 activity; 
↑ cGMP bioavailability and PKG 
production 

[348],[350],[351],[352], 
[353] 

Clinical ↓ BNP levels in patients with HF [354],[355] 

β3-Adrenergic agonists- 
Mirabegron 

Clinical ↓ Hypertrophic or fibrotic remodelling; 
↑ Cardiac index and ↓ Pulmonary vascular resistance 
in HFrEF patients; 
↓ Na+ overload in HF 

NOS activation; 
Antioxidant activity; 
↓ Oxidative inactivation of the Na+- 
K+-ATPase pump 

[359],[360];[366],[367] 

↑= Increase; ↓= Decrease 
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5.1. Inhibitors of phosphodiesterase type 5 and NO signalling modulation 

Phosphodiesterase type 5 inhibitors (PDE5i) are selective and 
powerful cGMP-specific PDE5i, which, as discussed above, catalyse the 
hydrolysis of cGMP that exerts a powerful vasodilatory activity and acts 
as a NO donor. Since PDE5 is an enzyme ubiquitously present in tissues 
including blood vessels and heart, it has been hypothesized that PDE5i, 
usually employed in erectile dysfunction treatment [247], could pro
duce beneficial effects in patients suffering from CVD, pulmonary arte
rial hypertension [248], heart failure and diabetes [249]. Indeed, in 
patients with HF, the PDE5i sildenafil induces increased cAMP produc
tion and a consequent activation of PKA, that in turn leads to the 
improvement of myocardial contractility through intracellular calcium 
concentration increase [250]. In vivo studies demonstrated that silden
afil administration exerts a significant cardioprotective activity against 
I/R injury, comparable to preconditioning induced by sublethal 
ischemia or adenosine. The observed cardioprotection could be a result 
of iNOS-mediated mitoKATP channel opening [251]. Indeed, NO pro
duction catalysed by iNOS could activate cGC, that in turn leads to cGMP 
formation and the consequent activation of PKG, which induces mito
KATP channel opening and the related cardioprotective effects [252]. 

In addition, it has been shown that chronic administration of sil
denafil in mice after permanent occlusion of the left anterior descending 
coronary artery (LAD) led to ischemic cardiomyopathy attenuation and 
left ventricular function improvement through PKG activation [253]. 
However, in a mouse model, it has been observed that sildenafil treat
ment is also able to mitigate heart failure progression through the in
hibition of Rho/Rho-kinase pathway [254]. 

Furthermore, preclinical studies described the PDE5 upregulation 
and the NO signalling dysregulation under oxidative stress conditions 
[251,255], demonstrating that PDE5 inhibitor administration is 
involved in a significant reduction of oxidative stress in heart failure 
[256]. 

Based on the crucial role played by PDE5 upregulation and oxidative 
stress in cardiac damage, a recent in vitro study carried out on car
diomyocytes exposed to doxorubicin suggested that PDE5 inhibition by 
natural extract Icarin could restore the eNOS/iNOS rate, thereby pro
moting cardioprotective effects against doxorubicin-induced cardiotox
icity [257]. 

Since PDE5i treatment, in preclinical studies, showed a significant 
cardioprotective effects, several clinical trials evaluated the car
dioprotective action of phosphodiesterase inhibitors, especially as 
regards the beneficial effects carried out in the damage from cardiac 
ischemia, showing that Tadalafil, a novel long-acting inhibitor of 
phosphodiesterase-5, exerted its cardioprotective action through PKG- 
dependent generation of H2S and via the phosphatidylinositol 3-ki
nase/Akt signalling pathway [258,259]. Nevertheless, while different 
clinical studies observed that sildenafil, a potent PDE5 inhibitor, acts 
through the suppression of cGMP degradation, attenuating myocardial 
remodelling [260] and endothelium vasodilatation [261], and simulta
neously modulating haemodynamic state avoiding systemic hypoten
sion [79,262] in cardiovascular injury, further trials have shown 
conflicting results [18]. 

Indeed, in the Sildenafil and Diastolic Dysfunction After Acute 
Myocardial Infarction (SIDAMI) Trial, including patients with recent MI 
and diastolic dysfunction, it was shown that oral treatment with sil
denafil did not affect increased filling pressure and pulmonary artery 
hypertension, but there were effects on secondary end points [263]; the 
improvement in cardiac output is in line with previous studies per
formed in patients with HFpEF [264] and HFrEF, respectively [265]. 

In addition, other studies demonstrated that chronic sildenafil ther
apy, in chronic HF patients, was able to improve oxygen uptake, exercise 
haemodynamic and functional exercise capacity, through PDE5i- 
induced NO signalling regulation [266–268]. 

Sildenafil effects are also being examined in larger clinical trials: the 
HFpEF RELAX trial showed arterial pressure reduction, without the 

improvement of clinical status and exercise tolerance in patients with 
HFpEF, probably due to the high dosage or to the lack of cardiac PDE5 
upregulation [253]. Indeed, PDE5i activity is subordinate to cGMP 
production, and the haemodynamic stress might be due to molecular 
mechanisms upstream of the potential PDE5i effects [269]. 

The SystEmic Right VEntricular size (SERVE) trial is an on-going, 
multi-center, double-blind, randomized, placebo-controlled clinical 
study intended to evaluate the PDE5i (Tadalafil) effects on right ven
tricular volume and function, with the aim of provide information about 
PDE5 inhibition as a new therapeutic target in right ventricular failure 
[270]. 

Furthermore, the GOSPEL (Goal Oriented Strategy to Preserve 
Ejection Fraction Trial) clinical trial aims to evaluate the PDE5i effects of 
on right ventricular function and clinical outcome in patients with 
pulmonary arterial hypertension (PAH) [271]. 

The recent “Riociguat Replacing PDE5 Inhibitor Therapy Evaluated 
Against Continued PDE5i” Therapy (REPLACE) Trial, a prospective, 
randomized, controlled, international, multicenter, double arm study, 
suggested the potential use of riociguat in patients with PAH to directly 
stimulate sGC to counter PDE5i, which blocks the cGMP degradation 
[272]. 

5.2. sGC stimulators or activators and NO signalling 

Since, as described above, the alteration of NO-cGMP signalling and 
the impaired cGMP production induce endothelial dysregulation, 
fibrosis and ventricular hypertrophy, resulting in the development of 
heart failure, the NO-cGMP pathway represent an important treatment 
target to improve these outcomes. The therapy with cGC stimulators and 
activators can enhance cGMP production by the upregulation of the 
enzymatic activity of sGC, through the direct binding to reduced, heme- 
containing, sGC and to oxidized, heme-free sGC, respectively [273]. 

Several in vivo models of pulmonary hypertension, MI, chronic renal 
and heart failure have evaluated the pharmacological effects of cinaci
guat, a sGC activator. In particular, a study that used an experimental 
canine model of HF showed that cinaciguat administration causes a 
dose-dependent reduction in cardiac preload and afterload, and an in
crease of cardiac output [274]. 

Moreover, treatment with the sGC activator ataciguat led to endo
thelial function and platelet hyperaggregation improvement in an in vivo 
model of diabetes, including rats in chronic treatment with streptozo
tocin [259]. In addition, treatment of ApoE− /− mice with ataciguat was 
able to significantly reduce atherosclerosis and improve 
endothelium-dependent vasorelaxation [275]. 

Several preclinical studies demonstrated the role of cinaciguat in 
right ventricular hypertrophy remodelling reduction caused by severe 
pulmonary hypertension [276]. In addition, cinaciguat treatment pro
duced a significant improvement of cardiac hypertrophy in cardiomy
opathy diabetic models and a significant prevention of cardiac 
remodelling and fibrosis in pressure-overload models [277,278]. 

Based on preclinical evidence, a phase 2 study was conducted in 
patients suffering from acute decompensated heart failure (ADHF), 
showing an improvement in cardiopulmonary functions. However, 
clinical development of three different randomized, double-blind, pla
cebo-controlled phase 2b trials, including patients with ADHF, were 
blocked due to hypotensive effects produced, without beneficial effects 
[273]. Although the role of cinaciguat has been defined in acute HF, to 
the best of our knowledge there are no clinical data on sGC activator 
activity in chronic HF. 

Similarly to sGC activators, in vivo treatment with sGC stimulators in 
post-MI models, in Dahl salt-sensitive rats and in angiotensin II pressure- 
overload models, showed beneficial activities to prevent ventricular 
stress, pathological cardiac remodelling and fibrosis, thus preserving 
cardiac function [275,279]. In particular, mice treated at the reperfusion 
onset with riociguat, a sGC stimulator, showed a significant reduction in 
infarct size and an improvement in LV systolic function [79], suggesting 
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the potential therapeutic effect of sGC stimulation during reperfusion to 
prevent HF after MI. 

Several clinical studies were conducted to evaluate the safety and 
efficacy of chronic riociguat therapy: the PATENT-2 study showed good 
tolerability of riociguat treatment that improves cardiac function with 
the prolongation of six minute walking test (6MWT) distance [280]. 
Subsequently, the potential additive effect of PDE5i and riociguat was 
evaluated in the PATENT PLUS study, but no significant differences were 
observed in exercise capacity and haemodynamic markers between the 
combination of the two drugs and the use of sildenafil alone [281]. 

In the CHEST-1 multicenter study, riociguat treatment led to 6MWT 
distance improvement in patients suffering from chronic thromboem
bolic pulmonary hypertension (CTEPH), with a significant decrease of 
NT-proBNP and pulmonary vascular resistance. To test the long-term 
efficacy of riociguat, the CHEST-2 clinical study was carried out, and 
the results obtained confirm the improvements in 6MWT in patients 
with CTEPH after one year of treatment [282]. 

In the RIVER study, Marra et al. demonstrated that long-term treat
ment with riociguat caused a reduction of right heart size and an 
improvement of right ventricular function in patients suffering from 
PAH and CTEPH [283]. Furthermore, the DILATE-1, a randomized, 
double blind, placebo-controlled study, evaluated the effects of single 
doses of riociguat in patients with HFpEF and PH, suggesting that rio
ciguat, in addition to the vasodilatory effect exerted at systemic level, 
could ameliorate diastolic function [284]. 

Two phase IIb trials were carried out to evaluate the effect of sGC 
stimulators in HFrEF (SOCRATES-Reduced) and HFpEF (SOCRATES- 
Preserved) patients respectively, and the data obtained have shown 
mixed results [285,286]. In particular, the primary end-points of 
SOCRATES-Preserved trial were not achieved and the patients treated 
with vericiguat (a soluble sGC stimulator) did not show a reduction in 
the N-terminal pro-BNP levels and in left atrial volume at 12 weeks of 
treatment. Nevertheless, vericiguat treatment was well-tolerated and 
was able to improve the quality of life in patients with chronic HFpEF 
[286]. Similarly, in the SOCRATES-Reduced clinical study, the primary 
end point, consisting in N-terminal pro-BNP reduction, was not ob
tained, but a significant improvement in clinical outcomes was 
observed, with a decrease of HF hospitalization and cardiovascular 
mortality [285]. The results of the pivotal phase III VICTORIA (Ver
iciguat Global Study in Subjects with Heart Failure with Reduced Ejec
tion Fraction) trial, carried-out to verify the SOCRATES-REDUCED trial, 
confirm that the incidence of cardiovascular mortality and HF hospi
talization was lower in patients with high risk of heart failure treated 
with vericiguat than patients receiving placebo [287]. 

5.3. BH4 or folate supplementation and NOS activity improvement 

NO synthase co-factor BH4 plays a key role in NO regulation and 
oxidative stress reduction. Endothelial BH4 depletion results in NO loss 
and increased ROS production by NO synthase, leading to development 
of CVD [288]. Since the oxidative stress produced is associated with BH4 
oxidation into BH2 and eNOS uncoupling, it has been hypothesized that 
BH4 supplementation could represent a valuable therapeutic option for 
NO-mediated endothelial dysfunction [173]. 

Indeed, in vivo studies demonstrated that BH4 supplementation was 
able to reverse NOS uncoupling and cardiac dysfunction [173,211]. In 
particular, BH4 supplementation in a mouse model of chronic ventric
ular pressure, obtained through the transaortic constriction, counter
acted the increase of oxidative stress, the cardiac hypertrophy and the 
subsequent ventricular dysfunction development caused by NOS 
uncoupling [289]. 

Further evidence in a mouse model of hypertension, obtained by 
deoxycorticosterone acetate (DOCA) treatment, demonstrated that BH4 
supplementation reversed endothelial dysfunction through NOS recou
pling [290]. 

Moreover, BH4 supplementation was able to produce the partial 

inhibition of ROS production and restore NO production in isolated rat 
hearts [291]. In addition, BH4 treatment improved ventricular function 
following I/R injury in isolated perfused rat hearts [292]. 

Following the promising preclinical results, the first clinical studies 
suggested the beneficial effects of BH4 supplementation on cardiac 
function, showing an improvement of endothelial-dependent vasodila
tation due to restoration of NO activity in patients suffering from type II 
diabetes mellitus or hypertension [293,294]. In addition, a randomized, 
double-blind crossover study has identified a potential role of short-term 
BH4 supplementation to mitigate macrovascular dysfunction in patients 
with HFpEF, through NO pathway modulation [295]. 

Although later trials observed that oral BH4 supplementation in 
patients with coronary artery disease increased plasma levels of BH4, 
the simultaneous increase of the oxidation product BH2 led to the loss of 
therapeutic effect exerted through eNOS recoupling, with the subse
quent inability to counteract systemic and vascular oxidation [296]. 

Due to the deleterious amplifying effect of BH2 production caused by 
BH4 supplementation, additional treatments able to reduce BH2 and 
restore NO activity have been evaluated. Among these, folic acid or its 
derivatives are able to reverse endothelial dysfunction through different 
mechanisms. The first mechanism consists of homocysteine lowering, 
since 5-methyltetrahydrofolate (5MeTHF) can methylate homocysteine 
to methionine. The second is direct antioxidant activity, through the O2

−

scavenging effect exerted by 5MeTHF. The third mechanism involves 
chemical BH4 stabilization or regeneration from BH2 [297]. The last 
mechanism concerns the direct effects on eNOS, through the enhance
ment of BH4 binding. In addition, folates contain a characteristic pterin 
ring structure similar to BH4, and thus may directly bind the active site 
of eNOS enzyme, mimicking BH4 activity [298,299]. An in vitro study 
investigated the role exerted by folic acid on endothelial cell dysfunc
tion, showing a significant increase of BH4 and NO bioavailability and a 
decreased levels of homocysteine in cells treated with high doses of folic 
acid [300]. In addition, folic acid treatment restores NO bioavailability 
and BH4 and DHFR levels in human pulmonary artery endothelial cells 
(HPAEC) and murine pulmonary arteries under hypoxia, through the 
promotion of BH4 recycling and eNOS recoupling [301]. 

Clinical evidence suggests that treatment with folic acid at 5 mg/ 
daily is effective in improving NO-dependent vasodilation in patients 
suffering from endothelial dysfunction, through increased NOS coupling 
and NO bioavailability, independent of decreased plasma homocysteine 
[302]. In addition, a placebo-controlled, double-blind, parallel design in 
which patients with coronary artery disease received 5 mg/daily 
(high-dose) folic acid, 400 μg/daily (low-dose) folic acid, or placebo for 
7 weeks, showed that low doses of folic acid treatment counteract 
vascular dysfunction through the improvement of NOS activity and 
reduction of vascular oxidative stress. Treatment with high doses of folic 
acid did not show greater benefit than low doses, since the direct 
beneficial effect was due to the level of 5-methyltetrahydrofolate in 
vascular tissue rather than in plasma [303]. 

Nevertheless, in a clinical study that enrolled women with either a 
history of CVD or three or more coronary risk factors, it was observed 
that after 7.3 years of treatment and follow-up, the combined treatment 
with folic acid, vitamin B6, and vitamin B12 did not reduce the total 
cardiovascular risk, despite significant homocysteine lowering [304]. 

The divergent results above suggested a potential dose-dependent 
activity of folic acid treatment in CVD. A meta-analysis study conduct
ed in 2016 showed that folic acid supplementation reduced by 10 % the 
risk of stroke and by 4 % the risk of overall CVD, with a significant 
correlation with lower plasma folate levels, absence of preexisting CVD 
and decreased homocysteine levels [305]. In the meta-analysis, there is 
no evidence of benefits on endothelial dysfunction due to the folate 
supplementation [305]. However, it has been shown that the chronic 
treatment with high doses of folic acid could lead to the development 
and progression of cancer, thus requiring a careful risk-benefit assess
ment [306]. In particular, although the previous evidence is conflicting 
[307], a recent study confirmed that the treatment with folic acid and 

R. Mollace et al.                                                                                                                                                                                                                                



Pharmacological Research 196 (2023) 106931

14

vitamin B12 was related to a significant colorectal cancer risk increase 
[308]. 

Further in vivo studies using Sprague–Dawley rats, C57BL/6 J mice 
and eNOS− /− mice were conducted to evaluate the potential role of in 
tandem NADPH and BH4 supplementation in postischemic endothelial 
dysfunction, observing that the association between NADPH and BH4 
supplementation produce a complete eNOS-dependent coronary flow 
restoration [209]. In fact, I/R damage causes NADP(H) depletion, which 
impairs eNOS function and reduces the amount of BH4 that can be 
recycled by NADPH-dependent pathways. Specifically, since activation 
of CD38 was demonstrated to be the cause of the strong endothelium 
NADP(H) depletion, it has been observed that CD38 suppression 
increased recovery of ventricular systolic function, decreased post
ischemic cardiac infarction, and preserved endothelium-dependent 
coronary flow, eNOS coupling, and NO production [209]. 

5.4. Iron supplementation 

As described above, iron deficiency, through the dysregulation of 
several iron-based enzymes, plays a crucial role in oxidative and nitro
sative stress induction in cardiomyocytes, thus producing mitochondrial 
metabolism impairment and left ventricular dysfunction [212,213]. 
Since patients with heart failure frequently suffer from iron deficiency, 
which is a predictor of bad clinical outcomes, the correction of anaemia 
could play a key role in heart failure management [309]. To this goal, 
several clinical studies have been performed, showing the benefit of 
intravenous supplementation with ferric carboxymaltose in patients 
with HFrEF, in which significant functional capacity improvement, 
inflammation decrease and subsequent re-hospitalization reduction 
have been observed without a significant decrease in mortality [310]. 

In the trial FAIR-HFpEF, conducted to evaluate the efficacy of 
intravenous iron carboxymaltose treatment in patients with HFpEF, iron 
carboxymaltose supplementation improved functional capacity, symp
toms and the quality of life [311]. Furthermore, these results were 
confirmed by the CONFIRM-HF trial, carried out to evaluate the benefits 
and safety of long-term intravenous iron treatment; a significant 
reduction of hospitalization risk was observed, but there was no evi
dence of mortality prevention [312]. 

In addition to these data, a recent clinical trial in a cohort of patients 
with HFpEF showed for the first time that intravenous ferric carbox
ymaltose therapy supplementation was able to improve cardiac perfor
mance derived from 6MWT, mainly in patients in which the diastolic 
function was severely compromised [313]. The amelioration of exercise 
capacity was associated with improvement of endothelial function and 
oxidative status of the patients enrolled, evaluated by Endopat study of 
vascular reactivity and malondialdehyde (MDA) level determinations, 
respectively [313]. 

5.5. Nitroxyl (HNO) 

HNO is a well-known pharmacological agent for the prevention and 
treatment of I/R injury and HF [314]. Endogenous HNO can be syn
thesized from NOS-dependent and -independent pathways. In the first 
case, HNO can arise from NOS itself or from the oxidation of NOS in
termediates including N-hydroxy-L-arginine and hydroxylamine. 
NOS-independent pathways involve NO reduction by xanthine oxidase, 
ubiquinol, haemoglobin, mitochondrial cytochrome c, and manganese 
superoxide dismutase (MnSOD) [315]. Furthermore, HNO derives from 
the redox interaction between H2S and NO and plays a specific effective 
role within the cardiovascular system [316]. Indeed, it has been 
demonstrated that HNO resulting from this chemical interaction shows 
inotropic and lusitropic effects under normal and congestive heart fail
ure conditions in animal models [317]. HNO reacts with negatively 
charged thiols, converting them reversibly to disulfide residues or, less 
reversibly, to sulfonamides. This chemical reaction determines in iso
lated cardiomyocytes the increase in SERCA activity and activation of 

RyR2, increasing Ca2+ re-uptake into the SR and eliciting a rapid release 
of Ca2+, respectively. This results in an optimization of diastolic and 
systolic function. In addition, HNO directly modifies cardiac myofila
ment proteins to increase their Ca2+ responsiveness and thereby systolic 
force generation [318]. Interestingly, in rodent cardiomyocytes, the 
HNO donor Angeli’s salt (AS) increases Ca2+ transients exclusively from 
changes in SR Ca2+-cycling, and not from L-type Ca2+ current (ICa), thus 
counteracting the detrimental effects of enhanced extracellular Ca2+

influx via ICa (adverse remodelling, increased arrhythmogenesis and 
increased apoptosis) observed after prolonged use of classical pharma
cological agents used in the treatment of HF (i.e., β-AR agonists, phos
phodiesterase inhibitors, etc.) [319]. Thus, this observation supports the 
potential therapeutic use of HNO donors in HF treatment, as HNO works 
independently of ICa. Furthermore, preclinical studies have shown that 
HNO exerts vasodilation like NO through the activation of sGC/cGMP 
signalling but does not develop tolerance usually associated with 
traditional nitrates, likely due to its superoxide-suppressing activity 
[320–322]. 

The clinical use of HNO donors is limited, due to their high alkaline 
properties. Therefore, HNO was generated using CXL-1020, whose 
decomposition generates pure HNO, mimicking all cardiac activities of 
the classical HNO donors without NO generation or the need for an 
alkaline vehicle [323]. CXL-1020 efficacy was tested in a phase IIb trial 
in patients with systolic HF (NCT01096043). An intravenous infusion 
(6 h) of CXL-1020 (1–20 µg/kg/min) in hospitalized patients was able to 
reduce left and right heart filling pressures and systemic vascular 
resistance. In addition, the highest dose tested augmented cardiac and 
stroke volume, while heart rate was unchanged at all doses [324]. 
Prolonged infusion of higher doses of CXL-1020 showed inflammatory 
irritation at the site of infusion. Therefore, a novel second-generation of 
HNO donors (BMS-986231) was developed and tested in a phase 2a 
dose-escalation study in hospitalized patients with HF with reduced 
ejection fraction (NCT02157506). In particular, a BMS-986231 intra
venous infusion (6 h) rapidly reduced pulmonary capillary wedge 
pressure (PCWP), which was one of the primary endpoints of the study. 
The effect was sustained throughout the duration of infusion in all dose 
groups. Moreover, time-averaged reductions in pulmonary arterial dia
stolic pressure (PADP) and pulmonary arterial systolic pressure (PASP) 
were observed in all BMS-986231 dose groups, compared with placebo 
[325]. Among the adverse effects, hypotension and headache were 
evidenced more frequently in patients treated with BMS-986231 
compared with the placebo group (range:42.9–83.3 % vs. 25 %), 
although no dose dependence was observed [325]. Subsequently, the 
STAND-UP AHF trial, a multicenter, randomized, double-blind, place
bo-controlled, phase 2b study trial evaluated the safety and efficacy of 
continuous 48 h intravenous infusions of BMS-986231 in hospitalized 
patients with HF and impaired systolic function (NCT03016325). 
Though BMS-986231 was able to reduce congestion markers, this effect 
did not persist beyond the treatment period and did not confirm a 
long-term benefit [326]. Other ongoing trials are comparing the 
BMS-986231 haemodynamic effects respect to nitrates and placebo 
treatment (StandUP-Imaging study), and the additive effects with loop 
diuretics to improve decongestion in patients suffering from HF 
(StandUP-Kidney study) [327]. 

5.6. Nitrate–nitrite supplementation in cardiovascular disease 

The protective role of nitrate and nitrite supplementation in in vivo 
models of I/R injury, hypertension and HFpEF have been shown in 
numerous clinical studies. Dietary nitrate supplementation (250 ml\die 
of beetroot juice for 4 weeks) decreased blood pressure in both drug- 
naive and treated patients with hypertension, with absence of signs of 
tolerance and an improvement of parameters of vascular function, 
including aortic pulse wave velocity (PWV), augmentation index and 
flow-mediated dilatation (FMD) [56]. These beneficial effects seem to be 
dependent on the initial degree of blood pressure elevation and vascular 
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dysfunction, and not on the antihypertensive medication status [328]. In 
addition, nitrate supplementation can significantly decrease diastolic 
blood pressure (DBP) and systolic blood pressure (SBP) in older adults, 
especially in whose age ≥ 65 [329]. Recent evidence suggests that ni
trate and nitrite supplementation could be involved in the regulation of 
glucose-insulin homeostasis. To this end, the efficacy of chronic oral 
nitrite therapy (sodium nitrite at a dose of 40 mg 3 × daily for 12 weeks) 
was evaluated in a phase 2 study, in patients suffering from hypertension 
and metabolic syndrome (NCT01681810). Nitrite therapy significantly 
reduced SBP and DBP, but tolerance was observed after 10 weeks of 
therapy [330]. Beyond the antihypertensive properties of oral nitrite, 
this study highlighted a significant reduction of carotid intima-media 
thickness (IMT) and a marker of carotid atherosclerosis, and a trend 
towards improved insulin sensitivity [330]. Larger and blinded 
placebo-controlled studies are needed to confirm these findings. In vivo 
studies of myocardial I/R injury, nitrate and nitrite supplementation has 
shown beneficial effects, reducing reperfusion injury and the consequent 
MI size [57,331]. These findings have been translated in two indepen
dent clinical trials. In NIAMI clinical trial, intravenous infusion of so
dium nitrite immediately prior to reperfusion in patients with acute 
ST-elevation myocardial infarction (STEMI), did not reduce infarct 
size [332]. Although in the phase 2 NITRITE-AMI study, intra-coronary 
nitrite infusion did not alter infarct size, in a sub-group of patients with 
Thrombolysis In Myocardial Infarction (TIMI) flow ≤ 1, there was a 
significant reduction in MI size compared to the placebo group [333]. 
This beneficial effect could be attributed at least in part to the sup
pression of pro-inflammatory neutrophil activation during reperfusion 
[334]. 

Several studies suggest that low NO bioavailability is responsible of 
compromised exercise vasodilatory reserve and reduced skeletal muscle 
perfusion during exercise intolerance of HFpEF [335,336]. Recently, it 
has been observed that the nitrate-nitrite-NO pathway is a significant 
NO source that can improve haemodynamic imbalance induced during 
exercise in patients with HFpEF. In particular, acidosis and tissue hyp
oxia, increased during exercise, may improve the reduction of nitrite to 
NO [65,337]. The effects of acute and short-term administration of 
inorganic nitrate/nitrite have been evaluated in several randomized 
controlled trials but with conflicting results. Some studies showed pos
itive effects of inorganic nitrate/nitrite in amelioration of cardiac hae
modynamics and exercise capacity in patients suffering from HFpEF [65, 
337–339], while others did not [340–342]. 

A recent meta-analysis of randomized controlled trials conducted in 
patient with HFpEF showed no benefit of inorganic nitrate/nitrite 
treatment on exercise capacity. Notably, peak oxygen consumption 
(peak VO2), respiratory exchange ratio (VCO2/VO2) during exercise and 
exercise time did not increase compared with the placebo group. How
ever, analysis of haemodynamic parameters showed that inorganic ni
trate/nitrite could reduce rest SBP, rest/exercise DBP, rest/exercise 
mean arterial pressure (MAP), and exercise systemic vascular resistance 
(SVR) [343]. 

The plasmatic half-life of nitrite, too short to sustain high levels of 
plasmatic cGMP, can be a reason for the absence of beneficial clinical 
results. In addition, nitrite therapeutic effects can be influenced by the 
rate of administration and by the influence of dietary constituents or 
concomitant drugs. Indeed, treatment with proton-pump inhibitors 
abolishes the hypotensive effect of orally ingested nitrite [344]. 
Furthermore, nitrite administration with conjugated linoleic acid sup
presses the inhibitory effects of nitrite on platelet activation and vaso
dilatory actions [345]. Therefore, these observations show that 
metabolic and physiological responses to oral nitrate and nitrite can be 
significantly modulated by interaction with diet or concomitant 
medications. 

5.7. Hydrogen sulfide in NO/sGC/PKG signalling 

H2S plays a crucial role in NO/sGC/PKG signalling through the 

upregulation of Ca2+ entry, p38 MAPK/Akt stimulation and oxidative 
stress reduction in endothelial cells, with the subsequent increase in 
eNOS phosphorylation and NO production [346,347]. 

In a preclinical study of hind-limb ischemia, which was carried out 
using unilateral permanent femoral artery ligation, it was demonstrated 
that H2S interacts with nitric oxide metabolism in vascular remodelling 
caused by ischemia; in particular, H2S treatment restored the ischemic 
hind-limb blood flow, increased NOS expression and stimulated NO- 
mediated nitrite reduction, and stimulated angiogenesis through the 
increase of VEGF and Hypoxia-inducible factor 1-alpha (HIF-1α) activ
ity. These data highlight that H2S is able to increase tissue NO 
bioavailability, which is significantly decreased in CVD and chronically 
ischemic tissues [348]. This study suggests that H2S supplementation 
could potentiate the beneficial effects of nitrite supplementation [348]. 

In addition, H2S administration can increase cGMP through the in
hibition of PDE [349]. A recent in vivo study observed that Sodium 
hydrosulfide (NaHS) is able to decrease Phosphodiesterase 5 A (PDE5A) 
activity in a dose-dependent manner, suggesting that the increase of 
cGMP in endothelial cells may be due to its reduced degradation, with a 
mechanism similar to the pharmacological activity of PDE5i [350,351]. 

The diallyl sulfide is a constituent of garlic oil that is able to release 
H2S; in vivo investigation of diallyl trisulfide intravenous and intraper
itoneal treatment in I/R injury highlighted the cardioprotective activity 
exerted through eNOS activation and the maintenance of mitochondrial 
membrane potential, followed by myocardial inflammation reduction 
[352]. 

Taken together these data showed the beneficial effects of H2S 
treatment during I/R injury, resulting in infarct size reduction, cardiac 
function and remodelling improvement [353]. 

A phase I clinical trial, carried out following the preclinical data 
obtained, used a novel H2S prodrug (SG1002) to evaluate the safety and 
the modification of H2S and NO bioavailability in healthy and HF sub
jects. SG1002 was well tolerated at all doses in both groups. The results 
showed a significant increase of blood H2S levels and NO bioavailability, 
with a parallel reduction of BNP levels in patients with HF [354]. 

The recent GIPS-IV study, a double-blind, randomized, placebo- 
controlled, multicenter trial, which enrolled 380 patients with STEMI, 
examined the efficacy and safety of H2S-donor sodium thiosulfate. The 
primary endpoint was the evaluation of H2S-donor sodium thiosulfate 
effects on MI size, while the secondary endpoints consist of the evalu
ation of the effect of H2S-donor sodium thiosulfate on different param
eters such as CK-MB levels, LVEF and NT-proBNP levels [355]. However, 
unpublished results presented at the Annual Scientific Session, ACC22, 
showed that, at four months, although there was an absence of side ef
fects and major adverse cardiovascular events, the clinical study did not 
meet the primary endpoint and no significant differences in both groups 
in the secondary endpoints were observed [356]. 

5.8. β3-Adrenergic agonists and NO in the cardiovascular system 

Different evidence has highlighted the innovative role of the β3-AR, 
traditionally known as a modulator of lipolysis in adipose tissue, in the 
regulation of vascular tone [357]. Furthermore, β3-ARs have been 
detected not only in human endothelial cells, but also in cardiac myo
cytes, where their stimulation is associated with a negative cardiac 
inotropic effect and protection against hypertrophic or fibrotic remod
elling [358,359]. Notably, these cardiovascular effects related to β3-AR 
stimulation are associated with NO release through NOS activation 
[360]. Together, these findings make β3-AR agonists an attractive target 
for the development of new clinical strategies against CVD [361]. 

The effect of mirabegron, a β3-AR agonist currently used for the 
treatment of overactive bladder disease, was first examined in a pilot 
trial (BEAT-HF), in which changes in LVEF after 6-month of treatment of 
patients with HF and reduced LVEF were evaluated [362]. Changes in 
LVEF after six months between treatment groups were not significantly 
different, except in a subgroup of patients with LVEF < 40 %, suggesting 
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that the beneficial decrease in cardiac myocyte [Na+i ] depend on the 
severity of HF [362]. 

Preclinical findings on the reduction of β3-AR agonist-mediated 
myocardial hypertrophy and fibrosis, due to haemodynamic or neuro
hormonal stresses, have been translated into the phase IIb Beta3-LVH 
clinical trial (NCT02599480) [359,363]. In this multicentre, random
ized, placebo-controlled study, left ventricular mass index (LVMi) and 
diastolic function were measured in patients with LVH, randomly 
assigned to receive 50 mg of mirabegron (n = 147) or placebo (n = 149) 
for 12 months [364]. Unpublished results presented at the American 
Heart Association Scientific Sessions 2022 affirm that mirabegron did 
not meet primary and secondary endpoints, although safety at the dose 
used has been demonstrated [365]. Since β3-ARs increase in heart 
during the later stages of HF, its expression was probably low in this 
study and only the standard dose of the drug was used. Indeed, a small 
pilot study showed that high dose of mirabegron (300 mg/day for 1 
week) in patients with severe HFrEF (New York Heart Association 
functional class III–IV) increased cardiac index and decreased pulmo
nary vascular resistance compared to the placebo group; these results 
are useful in patients with worsening or terminal HF [366]. Therefore, 
preliminary results showed that mirabegron was able to enhance 
contractility in the more dilated left ventricles state, instead of remod
elling induction in condition of reduced diastolic dimensions. 

In addition to the increased activation of NOS/NO signalling 
restricted to receptor-expressing damaged myocardium and vascular 
tissues, mediating physiological signalling and preventing side effects 
such as hypotension, β3-ARs also exert antioxidant activity [359]. 
Indeed, β3-AR activation not only protects the NO/cGMP pathway from 
oxidative damage, preserving its beneficial role in myocardial remod
elling, but also reduces oxidative inactivation of the Na+-K+-ATPase 
pump, thereby decreasing Na+ overload in HF [367]. 

6. Emerging role of nutraceutical supplementation in NO 
signalling impairment and HF management 

Several evidence on pathophysiology of HF and other CVD suggests a 
crucial role of oxidative and nitrosative stress, due to the imbalance 
between free radical production and antioxidant defence activity [368, 
369]. Notably, the key antioxidant role of nutraceutical supplementa
tion in human health and cardioprotection, including the reduction of 
congestive HF incidence, has been highlighted [370–373]. 

6.1. Coenzyme Q10 and NO signalling modulation 

Coenzyme Q10 (CoQ10), ubiquitous in mammalian tissues, plays a 
crucial role in cardiac mitochondrial function and NO signalling [374]. 
Preclinical data obtained in different models suggest that the supple
mentation with CoQ10 improved outcomes of cardiovascular diseases 
[375]. Studies conducted in Zebrafish models have shown that the lack 
of UbiA Prenyltransferase Domain Containing 1 (UBIAD1), an antioxi
dant enzyme that regulates eNOS activity through CoQ10 synthesis, 
resulted in cardiovascular impairment due to the cellular damage 
consequent to ROS accumulation [376]. Indeed, since CoQ10 regulates 
eNOS activity in cellular membranes, its depletion can trigger eNOS 
uncoupling and the subsequent ROS increase, shifting the nitrous–redox 
balance towards oxidation [377]. 

In a randomized double-blind trial (Q-SYMBIO trial), the effects of 
CoQ10 supplementation were evaluated in 420 patients suffering from 
systolic HF, highlighting a significant improvement of HF symptoms and 
a significant reduction in major adverse cardiovascular events [378], 
although a recent metanalysis showed that there are not sufficient data 
to support the safety and efficacy of CoQ10 in HF [379]. 

Since there is a need for randomized controlled trials with large 
sample size, comparing coenzyme Q10 to placebo, CoQ10 is not 
currently recommended in the treatment of HF [378]. 

6.2. Flavonoids supplementation counteracts NO signalling impairment 

Flavonoids are polyphenolic antioxidants widely present in vegeta
bles, leaves, flowers, fruits, bark and seeds, commonly used in tradi
tional medicine [380]. It has been proven that dietary flavonoid intake is 
able to reduce cardiovascular risk, due to its antioxidant and free-radical 
scavenging properties and beneficial effects on endothelial function, 
exerted by the inhibition of low-density lipoprotein (LDL) oxidation, 
platelet aggregation and vasoconstriction. Several experimental studies 
and clinical trials evaluated the effect of flavonoid supplementation on 
HF [380–383]. 

In particular, underlying mechanisms for black tea cardioprotective 
activity involve antioxidant, anti-inflammatory, vasculo-protective, 
lipid-lowering and antithrombogenic properties of flavonoids. The 
endothelium-dependent vasodilation observed after supplementation 
with polyphenolic fraction of black tea was due to eNOS phosphoryla
tion and activation PKA- and Akt-dependent [384,385]. 

However, although the promising experimental data, the results 
obtained on vasorelaxation in isolated aortic rings are not consistent and 
the results of clinical studies are divergent and inconclusive [383,386]. 

A similar modulation was obtained by Olea europaea L. extract 
administration, since oleuropein was able to attenuate the Ang-II- 
mediated oxidative stress in vascular progenitor cells by its radical 
scavenger intrinsic property and the regulation of Akt/eNOS signalling 
pathway [387]. Furthermore, oleuropein counteracted cardiac damage 
in normal and cholesterol-fed rabbits exposed to I/R injury [388]. 
Although the promising preclinical data, the clinical results do not 
uniquely support the experimental data and more studies are required to 
fully explain the cardioprotective role of oleuropein [389,390]. 

Resveratrol is a natural phytoalexin extracted from grapes, peanuts 
and red wine and plays a key role on ROS scavenging [391]. Preclinical 
evidence showed that resveratrol was able to improve cardiac function 
in I/R through the modulation of NO pathway, endogenous redox sig
nalling and autophagy in diabetic rats. 

Cardioprotective effects of resveratrol in I/R injury are well docu
mented in the presence of cardiometabolic diseases. Indeed, it has been 
observed that resveratrol alleviated cardiac dysfunction due to I/R 
through induction of proteins involved in NO pathway, autophagy, and 
endogenous redox signalling molecules in diabetic rats [392,393]. 
However, in contrast to preclinical data, only few clinical studies 
highlighted the cardioprotective effects of resveratrol in patients 
suffering from diabetes [394]. Clinical trials with a large cohort are 
needed to validate the results obtained in the previous clinicals studies, 
which enrolled a small number of patients. 

Interestingly, a recent in vivo study demonstrated the car
dioprotective effect of berberine, a main bioactive compound contained 
in Rhizoma coptidis and other herbs, used for the treatment of several 
diseases, such as hypertension, carcer, diabetes and atherosclerosis 
[395,396]. The observed cardioprotective effects of berberine were 
mediated by the increase of cardiac total NOS activity and the upregu
lation of Akt/eNOS pathway [397] Furthermore, berberin significantly 
ameliorated cardiac function in a mouse model of chronic HF [398]. 

A randomized, double-blind controlled trial showed that berberin 
supplementation significantly ameliorated exercise capacity and LVEF 
in patients suffering from chronic HF [399]. Although these preclinical 
and clinical evidence, there is a lack of clinical data demonstrating the 
direct role of berberin on ROS scavenging activity, primarily tested in 
patients with MI and not in patients with chronic HF [400,401]. 

However, in experimental preclinical and clinical investigations, it 
has been extensively examined the potential antioxidant and car
dioprotective role of Citrus bergamia Risso&Poiteau polyphenols [380, 
402–404]. In particular, the in vitro data obtained highlighted the sig
nificant cardioprotective effects of Bergamot Polyphenolic Fraction 
(BPF) to counteract Doxorubicin-induced cardiomyopathy through its 
direct scavenging and antioxidant activity, reducing excessive auto
phagy activation and apoptosis, thus preventing the pathological cardiac 
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remodelling [402]. 
Furthermore, several experimental studies demonstrated that hy

percholesterolemia produce an increase in infarct size in animal models. 
The decrease of cardiac content of NO and the increase of oxidative and 
nitrosative stress, the upregulation of apoptosis and cardiac gene 
expression profile modifications, induce myocardial impairment in 
hyperlipidemic condition [405]. 

The effect of BPF treatment in hyperlipidemic rats was associated to 
serum MDA levels reduction, a recognized biomarker of oxidative stress 
and PCSK9 expression decrease, suggesting the role of PCSK9 in the 
regulation of cholesterol metabolism and the relative cardioprotective 
action [406]. 

In addition, the results obtained in a clinical study suggest that the 
increase of NO release in response to BPF supplementation could play a 
key role in cardiovascular adaptive mechanisms in athletes, enhancing 
the exercise performance [407]. The study was carried out on athletes 
demonstrating the amelioration on serum ADMA, NO, Endopat indices 
of endothelial function and maximal oxygen uptake, apported by BPF 
supplementation. [407]. 

Nevertheless, although the nutraceutical supplementation is a 
promising field in cardiovascular disease prevention and treatment, the 
potential for its use in HF still needs to be extensively and adequately 
assessed. The limiting factors in the performance of translational studies 
include the antioxidant bioavailability, the choice of the correct clinical 
dosage of bioactive compounds and the design of experimental in
vestigations, which is often unable to reflect comorbidity conditions in 
humans [380]. 

More studies are needed to assess and validate the best combination 
of nutraceutical supplementation to counteract myocardial dysfunction 
in patients suffering from HF. 

7. Conclusion and future perspective 

HF has an overall impact in the global population whose diagnosis 
requires the existence of structural and/or functional cardiac impair
ment resulting in elevated intracardiac pressure and/or insufficient 
cardiac output at rest and/or during exercise. 

Clinical development and progression of HF is significantly affected 
by alteration of the oxidative environment and NO bioavailability. 
Notably, NOS uncoupling and the subsequent reduced NO production is 
involved in both vascular and cardiac cell damage. 

The understanding of the molecular mechanisms underlying endo
thelial and myocardial dysfunction plays a crucial role in the identifi
cation of new therapeutic targets. 

In particular, the mechanisms underlying HFpEF are not yet 
completely recognised and several factors are involved. HFpEF ia a 
consequence of systemic inflammation induced by coexisting comor
bidities that leads to ROS production by endothelial cells, reduced NO 
availability and decreased activation of cGMP-dependent PKG, trig
gering to myocardial hypertrophy and diastolic dysfunction. In addition, 
a low NO bioavailability and cGMP reduction are present in HFrEF pa
tients, leading to vasodilation impairment, aerobic exercise capacity and 
muscle power decrease. 

There is currently a gap in the HFpEF treatment and most of the 
drugs approved for HFrEF are ineffective for HFpEF. Different clinical 
investigations are ongoing, apporting new medical evidence for future 
treatment of HFpEF. 

It has been highlighted that NOS/NO and NO/cGMP signalling 
dysregulation may exacerbate cardiovascular damage. Based on this 
evidence, therapeutic approaches aimed at improving NOS signalling 
appear to enhance the NOS-dependent cardioprotective and vaso
dilatory effects. Many of the reviewed clinical trials showed an 
amelioration of primary and advanced haemodynamic parameters as 
well as congestive HF markers, though these beneficial effects did not 
persist beyond the treatment period. Conversely, different clinical 
studies failed to meet primary and secondary endpoints, although good 

tolerability and safety were observed at the doses used. 
Therefore, further high-quality basic experiments and large-scale 

and long-term clinical trials are needed to explore the efficacy and 
safety of new therapeutical strategies able to improve the unmet clinical 
endpoints in patients with HF, achieving the goal of reducing mortality 
and improving quality of life. Indeed, to achieve these outcomes 
multidisciplinary and multifaceted approaches are needed, based on a 
therapeutic regimen, including multiple drug combinations, to obtain a 
symptomatic and prognostic improvement in all patients. 

In addition, novel drugs and nutraceuticals have been discovered to 
modulate NO/cGMP pathway, thereby representing potential innova
tive solutions in approaching heart failure treatment. Finally, the 
contribution of nutritional sources of active ingredients interacting with 
NO/cGMP pathway appears to shed new light in the stimulation of 
endogenous biomolecular mechanisms of failing myocardial cells. 

Nevertheless, the potential use of nutraceutical supplementation still 
needs to be extensively and adequately assessed to validate the best 
combination in HF prevention and treatment. 
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